

<<< CLUB NOTES >>>

Houston Area Apple Users Group APPLE BARREL 4331 Nenana Drive Houston, TX 77035

The HOUSTON AREA APPLE USERS GROUP is an Apple II user club, not affiliated with Apple, Inc., or with any retail computer store. HAAUG is a member of the International Apple Core and supports its purposes and publications. General membership meetings are held on the second Thursday of each month in the rear chapel of Memorial Lutheran Church, 5800 Westheimer, right by the Jungman Branch Library and west of Chimney Rock. They start at 6:30 p.m. An additional meeting for access to the club software library. problem-solving, and various lectures is held the last saturday of each month at the University of Texas School of Public Health (in the Medical Center), 6905 Bertner off Holcomb, across from M.D. Anderson Hospital. We meet on the main floor, first room on the left. Parking is adjacent to the building. These Saturday meetings begin at 2:00 p.m.
---==*==---

OFFICERS / EXECUTIVE BOARD

President	Bruce Barber	$469-5805$
Vice President		
Treasurer	Ray Essig	
Secretary	James Odom	$497-7165$
Software Lib.	Dennis Cornwell774-3970	
Hardcopy Lib.	Larry Baumann	$498-3437$
Hardware Chair	(vacant)	
Business Uses	Rudge Allen	$622-3979$
Membership	Lee Gilbreth	$342-2685$
Newsletter Ed. Ed Seeger	$723-6919$	

MEMBERSHIP INFORMATION

Dues are $\$ 18.00$ per 12 -month period for regular memberships, $\$ 6.00$ for students through high school and where no adult member of the family is an Apple user. Please make checks payable to "Houston Area Apple Users Group," and mail to Lee E. Gilbreth, Membership Chair, 3609 Glenmeadow, Rosenberg, TX 77471. This includes a subscription to APPLE BARREL, which is published nine times a year. Newsletter exchanges with similar clubs are invited.

APPLE BARREL REPRINT POLICY

Unless otherwise indicated within the program or article, any ORIGINAL material published herein may be reprinted without permission by any non-profit Apple club, group or newsletter, PROVIDED proper credit is given to the APPLE BARREL and the article or program author.

SPECIAL INTEREST GROUPS

Members who share a common interest are encouraged to form Special Interest Groups to more fully explore their fields. Meetings may be arranged by common consent of the group and will ordinarily have one member who serves to coordinate or convene the meetings. If you would like to start a group around any given interest, please contact one of the club officers. If you would like to be in touch with others who share one of the following interests with you, please phone the coordinator.

Current groups are:

1) BUSINESS APPLICATIONS

Coordinated by Rudge Allen, 622-3979
2) PASCAL USERS

Directory being assembled
Pat McGee coordinating, 663-6806

This Special Interest Group is to meet and discuss aspects of Apple's Pascal language and to exchange programs.
3) MODEM USERS

Directory being assembled Herb Crosby coordinating, 497-1061
4) HAM RADIO OPERATORS

Coordinated by Ed Seeger, WB5PTW 723-6919
5) NEW MEMBERS

Coordinated by Lee Gilbreth, 342-2685
6) EDUCATIONAL APPLICATIONS

Coordinated by Darrell Kachilla, 498-0186
7) BEGINNERS' PROGRAMMING Coordinated by John C. Whiteman, 974-7287 (home) This Special Interest Group is to meet and discuss Integer Easic and Applesoft.
8) FILE CABINET

Coordinated by Lee Gilbreth, 342-2685
Purpose is to understand, expand and enhance the File Cabinet program.

APPLE BULLETIN BOARD SYSTEM

The Houston Area Apple Users Group supports an ABBS evenings and weekends, 6:00 pm through 8:30 am, and all weekend long. Feel free to sign-on and place your want-ad, meeting notice, request for help, Aggie joke, etc. Any ASCII terminal, Apple computer or not, with suitable modem or coupler, will give you ABBS capability. Note that our ABBS now has download capability! Call:

$$
713 / 654-0759
$$

SYSOP is Rudge Allen, 622-3979.

NE円 SATURDAY MEETING PLACE

The informal meeting held on the last Saturday of each month has a new home. Beginning in December (Saturday the 27th.), we will meet at the University of Texas School of Public Health, 6905 Bertner off Holcamb. Look for us on the Main Floor, first room on the left, or follow the sweet sound of etrl-G! This means we will no longer meet in the radio clubhouse. Thanks to the HAAUG Executive Board and to member Carl Hacker for arranging for these nice facilities. By the way, parking at the school is free and is right adjacent to the building.

ST. Lukés

M.D.Amosesin Hospital

Heccome

CAMDIDATES

Elections for Houston Area Apple Users Group officers for 1981 will be held Thursday evening, December 11, during the regular club meeting. The nominating cormittee met and then submitted its report at the November meeting. Nominations from the floor were then received. Candidates are as follow:

President: Bruce Barber, Lee Weitzenkorn
Vice President: Mike Kramer, Rich Fiennison, Bill Zahrt, Charlie Yust
Treasurer: Ray Essig, Dick Gleason, Brian Whaley
Secretary: Sam Block, Paul Maddock

All HAAUG members are urged to be present and to take part in the selection.

P. O. BOX 2227 SEATTLE, WASHINGTON 98111, USA

The International Apple Core will make individual subscriptions to "The Apple Orchard" available commencing with Volume I, Number 2 to be published in September, 1980.

NAME

\qquad

STREET \qquad

CITY
STATE
ZIP \qquad

COUNTRY

Annual Subscription Rate: $\$ 10.00$ per year
First Class Postage: $\$ 5.00$ per year additional (required for Canada, Mexico, APO, and FPO addresses) Overseas and other foreign air mail postage (required): $\$ 10.00$ per year additional
TOTAL REMITTANCE ENCLOSED:
\$(USA)
Make check or money order payable to "International Apple Core" and return with this form to:
Apple Orchard Subscriptions
P.O. Box 2227

7/7/80
Seattle, Washington, USA 98111

NAME GETAP SUBROUTINE

BY
MIKE KRAMER
When using file CABINET I frequently enter a person's name as the first item in each record. Since reports look better with names printed first name first, the name swap subroutine in the listing below was developed.

The subroutine is actually fairly simple, involving a FOR... NEXT loop with a range equal to the number of characters in the entered name (NM\$). The MID\$ function in Line 10040 is used to search for a space (SPS). If no space is found, no action is taken except a RETURN. If a space is found, Line 10070 exchanges the first and last names, inserting a space between them, and returns to the main program.

LIST 0,10080
100 HOME : INPUT "ENTER NAME ";NMS
110 SP\$ = CHR \$ (32): REM SPACE
120 GOSUB 10030
130 PRINT NM\$
140 END
10000 REM
10010 REM NAME SWAP SUBROUTINE
10020 REM
10030 FOR X = 1 TO LEN (NMS)
10040 IF MID\$ (NM\$,X,I) = SP\$ GOTO 10070: REM LOOK FOR SPACE
BETWEEN NAMES
10050 NEXT X
10060 RETURN
10070 NMS = RIGHT\$ (NM\$, LEN (NM\$) - X) + SPS + LEFT\$ (NMS,X 1): REN FLIP-FLOP FIRST AND LAST NAMES

10080 RETURN
\}RUN
ENTER NAME: MIKE KRAMER
KRAMER MIKE

PRINTER ACTIVATE/DEACTIVATE SUBROUTINES

BY
MIKE KRAMER
One of the most frustrating problems I've encountered with my Apple was trying to figure out how to tab past column 40 using the SSM AIO Interface Card RS232 port without evaporating my program. Some time back good old Dr.Apple helped by pointing out that I had to disable the screen before doing the tabs. Unfortunately, old Doc failed to tell how to do this. After a call to SSM's technician, I came up with the following subroutines to activate and deactivate the printer. Assuming the card is in slot \#l, The POKE 1401,128 in Line 10120 disables the screen, but only if a character has been printed following the PR\#l command. In this example, a TOP OF FORM character has been output. The POKE 33,33 in Line 10130 is needed to permit printing past column 40. The deactivate subroutine puts memory locations back to their normal values and switches output back to the screen.

10094
10095 REM
10096 REM
$10100 \mathrm{D} \$=\operatorname{CHR} \$(4):$ REM CTRL D
10110 PRINT DS;"PR\#1"
10120 PRINT CHR(10):REM LINE FEED
10130 POKE 1401,128:REM DISABLE SCREEN
10140 POKE 33,33:REM SET TEXT WINDOW
10150 RETURN
10154 REM
10155 REM DEACTIVATE PRINTER
10156 REM
10160 POKE 33,33
10170 POKE 1401,0
10180 PRINT D\$;"PR\#O"
10190 RETURN

Apple Computer Registers Its First Offer, Of 4.5 Million Shares at $\$ 14$ to $\$ 17$ Apiece

Abstract

By Marilyn Chase Staff Reporten of The Wall Street Jodrnal. CUUPERTINO: Calif.-Not since Eve has an apple posed such femptation. But this time it's Apple Computer Inc., which filed its long-awaited registration with the Securities and Exchange Commission for an initial public offering of 4.5 million common shares. The tentative offering price will be between $\$ 14$ and $\$ 17$ a share.

The hot manufacturer of personal com* puter systems for the home, business and educational markets; said the offering is planned for early December. Apple announced its intent to go public last August; and investor appetite for the new issue has been keen ever since.

The company will sell four million shares, and certain holders will sell 500,000 shares. Morgan Stanley \& Co. and Hambrecht \& Quist will lead a group of underwriters. As previously ronogted, Apple said.
 capital.

The registration statement filed yesterday charts the company's rapid rise since
 growing field of personal computers, right behind Tandy Corp.

Net sales in fiscal 1879 roughly quintupled from fiscat 1978 , the compant's first full year of operation Revenue rose to $\$ 47.9$ million from $\$ 7.9$ million, and earnings soared to $\$ 5.1$ mallion, br 12 cents a share, from $\$ 793,498$, or three cents a share.

In fiscal 1980; ended Sept. 26, profit more than doubled to $\$ 11.7$ million; or $\$ 4$ cents a share. Revenué rose to \$i17.9 million.

Published estimates of the company's performance call for revenue of $\$ 150$ million in calendar 1980, and $\$ 300$ million in 1981. However, the company will neither confirm or deny such estimates. "We're constrained from saying anything which could be construed as promotional," by the SEC, explained Frederick Hoar, vice president, corporate communications.

The company has 48.4 million shares outstanding, of 160 miliion authorized.

Apple's SAR Cutuspan which effers the first inside glimpse of pue of the most soungt-after neme stocks of the gear, alicoofoplets rising expenses for marketing, expansion and promotion.

Mathketing expensesf tereva 10% of net sales in fiscal 1980, reflectitig additions to Apple's sales force. Apple said that such outlays are expected to continue.

Advertising more than doubled to $\$ 4.5$ million in fiscal 1980, the company disclosed.

Apple also disclosed some potential soft. spots. The filing acknowledged the compiny lacks the market penetration of Tandy Corp.'s Radio Shack and the broad distriburtion of Commodore International Ltd., which also sells personal computers. Apple sefdiat "may also be at a competitive disadvantage" because it purchases integrated circuits and other parts used in computers, as well as a substantial portion of peripheral equipment, rather than making its own.

Positioning themselves for a share of the personal computer maifet are several larger companies includind Hewlett-Packard Co., Intemational BuSiness Machines Corp; Texas Instruments' Inc. and various Japanese manufacturers. And Apple said it is bracing itself for "intense competition" from such hearyweithts.:

Its newest weapon shand such competition, the Apple III comppiter, thas met with
 area't expected untillattetath gonth, Apple saided Designed primarily for more sophisticated businest explications than either the
 range in price from $\$ 4,300$ to 8680, depending on main memory sizagand perpheral equipment.

Apple alsoidtsclosed thativt of the target of a June 1980 , hawsut filea by former distributor, Higf techtrotory line, which alleged violation of federal autituist laws and breach of contract ampeng, other charges.
 the largest for $\$ 11,750004$, (azmages. The company has denied theoplogetions and filed a counterclaim.

Reprinted from the

Wall Street Journal

Nautilus Fund Finds Cause for Uneasiness In 'Rush of Success'

OutlookforHigh-Technology

 Shares Troubles a Holder母 YOf Apple ComputerStock:Bya Wall Street journal staff Reporter
BOSTON-Nautilus Fund, the high-flying closedend investment company, is getting worried about the outlook for its portfolio of hightechnology stocks.

The company, whose shares have soared because it owins. 180,000 restricted shares of Apple Computer Inc., is "delighted with the rush of success," Albert L. Toney, president, said.

MBitthe suddenness of its amival during a cycical correction in the economy, and the lefty heights to which stock prices of enerting companies have climbed, cause unease," Mr. Toney told the fund's annual meeting.

Because of this, the fund has "cut back on a number of positions ghaing the last month;" he said, and has withdrawn 15% of its cash from the market and put it into reserves. At the same time. Nautilus has "become even more selective in making purchases," he added.

Nautilus's Holdings in Apple Computer are restricted shares, which means they can't be traded. Nonetheless; mainly because Apple plans a public stock offering later this year, the stock price of. Nautilus last week was 57.5% above its net asset value.

Mr. Toney had said Nautifius plans to register its Apple shares with the Securities and Exchange Commission after the maker of personal computers issues stock to the public. But the Nautilus board, in an apparent reprimand, later issued a statement saying that it-rather than Mr. Toney-would decide the future of the fund's Apple shares.

Besides Apple, the major holdings of Nautilus include MCI Communications Corp., Paradyne Corp., Gerber Scientific Iric., UTL Corp., Evans \& Sutherland Computer Corp., NBI Inc., Yellowknife Bear Mines Ltd.; Anacomp"Inc:", and Southwest Airlines.

Overall "the outlook continues good for the dynamic companies we followf but expéctations of company managemént are becoming more guarded," Mr. Toney said. "The recent surge in business activity

WANTED: Person for full or part time position programming Apple II Plus. Must be proficient in Applesoft and Integer. Experience in Education and/or Aviation Fields helpful but not necessary.

This position would involve writing educational courseware for a helicopter training company, using the latest in Technology including video tape and disk interfaces.

Salary negotiable.
Call Joel Harris at 353-6540 (Houston) or 539-1893 (Conroe).

PATS PASCAL CORNER
The first four disks of the UCSD Pascal Users Group Iibrary have finally arrived. Programs of interest include a fancy text formatter, two Pascal prettyprinters, a simple text printer, Othello, blackjack, a sorter for ASCII files, chase, and a home finance program. These disks will be available from me at the saturday swap session. The next four disks will include an index for Jensen \& 'Wirth, Ken Bowles' new database seed, Wumpus (with 6 different caves), a file comparison program, a flexible data base/mailing list program, a disk patcher, a program to change identifiers in a source program, subroutines to convert from/to hex, decimal and octal, and several other software tools. I'll let you know when these come it, probably around the end of September. I've paid for these disks ($\$ 90$ so far) and am accepting contributions to spread the burden around.

VOLUME ONE, UESI FASCAL USERS' GROUF -- CATALGG
NOTE WELL: Let it be said here for all the files or this disk that UCSD Fascal is a trademark of the Resents of the University of Califormia. All software on this disk may be given awar but Not sold without prior arrangement with SofTec and/or Datamed Research.

CATALOG. TEXT....... what rou're reading now.
COMBINE.TEXT........a simple little thins to combine 2 ar more text files. CRT. I. O. TEXT....... very powerful, crash-proof data entry UNIT for CRT menus.
FOFMAT. DOC. TEXT.....documentation (from Fascal News) for FORMAT.
FORMAT. TEXT......... large, wonderful Fascal prosram prettrprinter.
FORMAT1.TEXT........ Part of FORMAT.TEXT (subfile).
FORMAT2.TEXT.........part of FORMAT.TEXT (subfile).
INITVAR.TEXT......... part of FRETTY.TEXT (sutifile).
L.TEXT..............a short but effective text printer with several options. FRETTY. TEXT.........the second Fascal prettrprinter, from the Fascal News. FRETTY. DOC. TEXT. ...documentation for both FORMAT and FRETTY. SIMF. TEXT..........cute program to produce random text; sounds "professional." TYFEEET.TEXT........takes text from editors \& right-justifies it. UNITS. LOC. TEXT......re UNITS, SEGMENTS, \& EXTEFNAL routines. VOLUME1. TEXT. how this disk is organized (more detail).

Have fun! Let me know if rou spot bugs or errors in any softuare or documentation on this disk, or if rou can clear up further mrsteries of ucse fascal.
, Iim Gasne, DATAMED RESEARCH

AFFLE VOLUME 2 CATALOG, UCSD FASCAL USERS' LIBRAFiY
FASCAL TRANEFER FROGRAM and other goodies.*

ACOUSTIC. TEXT...... Use an acoustic modem with the Fascal Transfer Frosram (FPTP). DCHAYES.IO. TEXT. .. Ilse a D.C. Haves modem $w /$ the Pascal Transfer Frosram (FTF). DELETE.LF.TEXT.....After transfering a textfile to ULSL, dumme ASCII 1 inefeeds. HEXOUT. TEXT.........Fascal routine to print out integers in hexadecimal. KBSTAT. TEXT........ Yet another kevhoard status routine, this time for FTF.TEXT. LINECOUNTR.TEXT....Count the lines of a textfile.
NEW. GOTOXY. TEXT. .. Good idea: let gotoxy handle rour cit screen, too. Sample. FERUSE. FG. TEXT.Look over a textfile on rour CFT one pase at a time. FOLICY, DOC. TEXT. .. . How the Users' Group Library runs. PRIME1. TEXT........Fascal routine to find prime numbers. FRIME2. TEXT........ Anather prime-number senerator. PTF. nof. TEXT. Documentation for the Fascal Transfer Frosrama
FTF. TEXT............ The Fescal Transfer Frosram. Fequires LZ editor to editn SMARTREMOT. TEXT.... Set up rour machine as a smert remote terminal. UPDATE. DOC. TEXT.... Latest news on the URSD Faseal Users Group Library. VoLume. 2. TEXT...... Notes on all the programs in Volume 2. WRITER. DOC. TEXT. . . . Documentation for WRITER. WRITER. TEXT.......A Auick but niftr text or source file printer.

* Note: UCSD Fascal is a trademark of the Resents of the Universitr of California. Flease read the file FOLICY. DOE. TEXT resardins the software on this disk. All files are further documented in VOLUME.2.TEXT.

APFLE USERS NOTE: VOLUME. 2. TEXT UESCRIBES ALL THE FILES ON THE ORIGINAL TWO S-INCH IISKS (VOLUME $2 A$ AND VOLUME 2B), WHICH I HAVE LEFT FOR YOUR PERUSAL. ALSO, FOR NOW THE ASSEMBL.Y-LANGLAGE ROUTINES FOR THE D. C. HAYES MODEM ARE IN BOSO ASSEMELY LANGUAGE AND ARE FOR THE DLI S-100 D.C. HAYES. YOUILL HAVE TO MODIFY THEM ON YOUR OWN. SHOULD EE EASY.
** FLASH **
THE UCSD SYGTEM USERS SOCIETY, FORMEI 21 UUNE 1960 , SELECTED THE FASCAL TRANSFER FROGRAM AS ITS OFFICIAL INTERMEMBER MODEM DRIVER. IT'S SLOW, BUT IT IMPLEMENTS WHAT IS KNOWN OF THE FCNET FROTOICOL, AND LETE YOU TRANSFER FILES IN TWO DIRECTIONS AT ONGE, WHILE ALLOWING CONVERSATION ON YOUR TERMINALE, <SIMLILTANEOUSLYY!! MINOR MOIIFICATJONS ARE FENIING (FRIMARILY IMFROVED USER INTERFACE) IN A FEW MONTHS.

VOLUME 3 EATALOG, UCSD PASCAL USERS' GROUP LIBRARY

Frose, sames, and some ideas.*

BLACKIACK. TEXT..... Now rou can play it in Pascal. Appropriate for 19go: allows nesative moner.

CHASE. TEXT.........A good implementation of an old favorite. Get awar from the robots, but don't set zapped br the electric fence!
[EETS.TEXT......... Home finance program, keeps track of rour bills. Nicely menu driven, easy to use.

OTHELLO. TEXT....... VERY nice implementation of OTHELLO, the best I've seen. OTHELL1. TEXT OTHELL2.TEXT
OTHELLINIT.TEXT.... Subfiles of OTHELIO.
FOLICY. DOC. TEXT. . . How the Users" Group Library works.
FROSE, DOC: 1. TEXT
FROSE. DOO2. TEXT... A subset of the documentation of Frose, cofied from the Fascal News No. 15. What rou really need to know to use it.

PROSE.TEXT.........A COpy of the fancy text-formatting program from the fascal News, No. 15, adapted for UCSD Pascal by its author, J. F. Strait, of the Universitr of Minnesota. Fiequires most of s4K of memory to compile.
FROSE. O. TEXT
FRGEE. A. TEXT
FROSE. B. TEXT
FROSE.C. TEXT
FROSE. D. TEXT
FROSE.E.TEXT
FROSE.F.TEXT....... Subfiles of Frose.

REQUESTS.TEXT...... Some ideas for some very needed programs and routines.
SNOOFY.TEXT.........Snoopr calendar, featuring the W.W. I flring ace.
STORE. LIATA.......... Sample data file for DEBTS.TEXT.
UNIVERSAL. TEXT.....Suggestion for a UNIT that will let us use each other's programs without having to edit in hardware-specific routines.

NOTE: UCSD Pascal is a trademark of the Resents of the University of California. Flease read the file FOLICY. DOC. TEXT resardins the software on this disk. All prosrams should be self-documenting, though roull have to fix hard-ware-specific pracedures in the same programs (see UNIVERSAL. TEXT for a discussion of this subject); as a rule, any code rour srstem does not support (e.s.? KerFress or a sritem clock) can just be deleted.

CCA DATA MANAGEMENT USERS GROUP

I had an interesting talk on the phone not long ago with Ben Herman, author of the CCA Data Management System, distributed by Personal Software. I know that a number of our HAAUG members have bought this package and so should be happy to know that a users group has formed. Ben reports that the group has just under 500 members now and has put out two newsletters.

Because the programs are written in Applesoft, and are therefore user-accessible and modifiable, there is a definite need for information exchange about customization, if nothing else. But beyond this, the system has spawned several "satellite systems," programs and documentation which are to be used in conjunction with it. VisiCalc is obviously one of these satellites, since the CCA menu hooks directly to VisiCalc interface routines. Also becoming available are a home accounting system, and also a memory-mapped screen editing system written in assembly language and replacing the file maintenance module currently residing on the system disk. There is to be a file fixer which will retail for $\$ 9.95$, and a disk catalog system. Look for a multi-key scan facility which implements compound logic for file searches. It will handle up to twenty-four levels of selection, although its and/or logic is reported to be limited. And there will be more spin-offs as well. Apple users who have not yet probed the power of the Indexed Sequential Access Method of file searching (ISAM) have in the OCA system a way to learn about this approach to filing and searching. If you, like me, view your Apple as much as a teacher as a tool, CCA has much in store for you, and this new users group should make the way a good bit easier-going.

Colin Jameson, of Jameson Electronics in Los Angeles, is editing the newsletter, which appears more or less quarterly. Membership dues are $\$ 9.00$ per year, and confer a newsletter subscription, use of both an east coast and west coast hotline number, and one free CCA-related ad. Sounds good! Colin can be reached at 1-213-540-5208. While back issues of the newsletter are available, they are sent only with a 10 -month membership, rather than 12, since this keeps records a lot more manageable. Let Colin handle that if you do decide to join. You will be billed after receipt of membership materials.

The December 11 meeting will feature a demonstration by Watanabe America of their Model WX4671 MIPLOT Intelligent Plotter. You may have seen the impressive demo of the MIPLOT on a PET (sorry) at Watanabe's booth at the ISA Show. This will be a good opportunity to see a peripheral which is not yet in common use on personal computers in the Houston area.

In conjunction with Watanabe's presentation, B.P.I. of Austin, developers of an extensive line of business-oriented software for the Apple II, will demonstrate their inventory, general ledger, accounts receivable, and accounts payable packages.

HAAUG BUSINESS GROUP MEETINGS

Time: 7:00 p.m.
Place: EBASCO offices
3731 Briar Park at West Park Houston

Thursday, December 4, 1980
Charting Commodity and Stock Prices with the Apple Prices retrieved via Modem.

Thursday, January 15, 1981
Demonstrations and Reviews of Data Base Management Systems including Personal Software's OCA DMS, Data Factory File Cabinet, Modifiable Data Base, and others.

We continue in this issue our sixth installment of Lee Meador's excellent series on the Disk Operating System, as originally published in the "Fort Worth Apple Users Group Newsletter." This installment is taken from vol. l, no. 8, 15 May, 1980. Lee is thinking of preparing a technical booklet on Apple DOS, with these studies as the core. Comments, errors noted and suggestions can be directed to him at 1401 Hillcrest Drive, Arlington, TX 76010.

DOS Disassembly (Fart 5)

 a parl al the same serics. ()h, well

 Apple controller. I ef's tiv to iccomstrinct the thimk ing. that went into the decision to make in leanl al buv the coulsoller. Youl have toremember ther his. is laking place several vears ago. I lisk conleolli: thip.
 new oll the serne. A simple dive wilh comblallet $1: 11$
 would be a listle relictallt to biov a thensamd dollan
 lot of prople would wath lwo dives and that pell the cost and al line for the people who were having Ap ple Il computers. We houphitall Aprle herallse is was a lol cheaper that the conpwition :menser
 Apple marle it deal will Shmpant, Her mernle whor

 chips and, acomdinglve coses lese And sur the Tpild.

 are me lomere signific:anslv cheaper tham the etamind
 hav licen lhere reallvisu'l anv compretition lon Ap pie alld they have on reasoll m binp thein pire

 controller corid)
 will see the schematic low the Aphle liak It intel lace c:ard. lhis is the eatel vell play illlo slon f for "hateren) It has place where one an Iwo cable. •: an
 top af the pare fare las is the sehem:ati let the

(muputer Co. The rest of the drive is made by Shuzart and sold as a package to Apple. These parts ale slathdard to all Shugarl drives as fal as I hnow.
licte ate some intelesting things you slowald note atorut the schematics. First, consider the finterface cald the teferences below are loohing at page 145 viluass so llie priming will be right sule up. The (ling al llie lower lert is an 8 bit addecssable latch. Hice mput marked D) is Ihe data. The Device Select lise is the cloch for the latch. Ithe itiputs natared Abl' select one of the 8 outpuls marked Q. R resets all lues tolan. When the Device Select line goes low (tic. You address one of the 16 device control addiesses - \$ConO to \$CONF where x is 8 plus the slot mumber) the value of D is transfered to the apPopliate () output. The other \mathbf{Q} outputs are not chatiged. Ihis allows the you to step the head in or "1101 hy dhangin! (2) though Q3, select dive I or 2 "Ill (9.t, hum the motor of the selected drive on or 011 ailh (1) alld du thingsi lhall will be discussed later "ilh (et alld (97. Notice that when the motor is lunlled wil the vartous mini-processor chips (I'll Welace that later, its the thece chips in the top center) ale aclually disconnected fiom the power supply. this is to keep the power requirements low. Notice lhat the IO Setect line turns the power on for the p's Kom in the sante manner. The ROM is last enough l. W. Iurned on at the power pin, calch the address wid telanil llie dested data before the Apple needs "1 liy the way, memory on peripheral calds only liceth to be hati as fast as the memory on the main boind beaduse it is not used to refresh the sereen.)
 the Addecss lines are mixed up and so are the data lines the choice of numbers for particular data and adders lines on a memory chip is really arbitrary, as lant: as bou use the same conventions going in and (bulnte oul. The mannfacturer always pichs an what int Apple choose (o) Igonote it. They probably did that whate the traces on the board caster to lay thil.

Now for the mini-processor, as I have named the thece chnss in the topectiter of the drawing along "ilh a tew ohther gates and wires. The P6 ROM chip and a 4 bit latch form the heart of the mini- processor. They provide the intornaton to mate the shift register do what is necessary to interlite to the $65(12$ data bus. The latch holds the outpul of some of Hec output lines from the ROM and teals them back in to allow the ROM to step from state to state. I define a state by the data on the adderess lines of the Kont. The R(DM is land out so that it loops though a limited number of states if there are no changes in

Whe inputs to the mini-processor. It might change the outputs in the process. The inputs are (26, Q7, Write Protect and Read Data. The output is Write Data. The 8 -bit value in the shift register can be both written and read. This mini-processor uses the PHI3 (1 have no greck letters) clock so it runs at 2 MHz . It changes state twice as fast as the $\mathbf{6 5 0 2}$ processor clock. Thus 64 cycles of the mini-processor are the same is 32 cycles of the 6502 . This, incidentally, is the anount of time needed to write one byte to the disk.

The Analug Card is a mystery to me. I have been told that the large chip in the bottom right hand corner of the drawing on page 146 is hooked up in a standard configuration. It is supposedly right out of the Motorola book. I have neither confirmed that nor proved it wrong. You see, I get lost easily when talking about hardware.
L.en's talk about the Q6 and Q7 lines for a moment. You have seen them referred to in the RWTS listings and in the disassembly from the last issue. I hey control what the mini-processor is doing.

Q7 (36

0) 0 - Read into Shift Register from diskette

0 1 - Check Write Protect status
1 () - Write Shift Register to diskette
11 - Load Shift Register from Data Bus
How to do a write: You load a value to write into the shift register by bringing Q6 high and then do SI'A \$C O81: X to bring Q7 high. (You could have Q7 high and do STA \$CO8D, X if you want.) Then do L.DA \$(08(', X (or ORA as another option) to bring (56 low and combinue the write. After the value is loaded (the mini-processor waits 5 mini-cycles and), the write line goes high (when bit 7 is high and it should always be high since you can't read bytes back in if bit 7 is low.) After that something will happen every 8 mini-cycles. If there was a one bit as the high bit of the shift register, then the write line changes (low-high or high-low). If there was a zero bit as the high bit of the shift register, then the write line stays the same. (ie. What happens is nothing at all.) The shift registe is shifted left once every 8 mini-cycles so that the change or no-uhange in the write line reflects the contents of the shift register. On the 3 red mini-cycle after the write line changes (or doesn't change) the shift register is shifted left and the next highest bit is available. Then 5 mini-cycles later the write line retlects the new value of QA (ie. the latest high byte in the shift register.) See the WRITI: chart for a look at the states the minimachine goes through when it is writing bytes. The contents of the I'6 R OM that alfect the Write states
have not been changed from the old to the Pascal version of the P6 ROM. The Disk software is responsible for putting a new value in the shifi register or turning off the write mode exactly 64 mini-cycles after the previous byte was put into the shift register. If not, extra zero bits are wrillell on the diskette following the eight bits from the last byte. That is why each hyte that is writtell must have the 7 th bit set. A zero bit is the default-no change. That is also why the software to produce self-sync (also called auto-sync.) writes an \$FF to the divk but waits 36 cycles (ie. 72 mini-cycles) before writing another byte. Notice what this will do in the Read algorithm bclow

How to check Write protect: When the (2) line is high and the Q7 line is low the mini-processor will change into state $\$ 14$ within 2 mini cycles. State $\$ 1.1$ shifts right (bringing the value of the write peotect line from SR into the low bit of the shift tepister) and then goes to itself. It only takes 8 mini cycles before the whole shift register reflects the value of the Write Protect line. \$FF means the slot on the diskette is covered and zero means it isn't. Within those 4 processor cycles there isn't even time to read the shift register before it's ready. So, I.DA SCO8E, X will get \$FF or zero from the shift register and a BMI will branch if the disk is write protected. X should hold the slot number in the foim $\$ \times()$. The mini-processor stays in state $\$ 14$ until either $\mathbf{~} \mathbf{~} 6$ or Q7 changes. There were no changes made in this part of the ROM when they made the Pascal P'6 R(IM. either.

How to do a Read: To me, reading is the most interesting part of this whole thing. It's because when you are reading you must reproduce in the shift register whatever data was written. That isn't casy because you may be reading on a different drive from the one that wrote the diskette. Not all drives are created equal, some run slower, some faster. Even if it is the same drive there may be slight voltage level differences that cause changes in the 1 motor speed. It might be warmed up now and run a little faster or slower. The room temperature or humidity might be different causing the diskette itself to expand or contract. That would cause the read head to be a little off from the center of the recorded signal. If the diskette is a little off center on the spindle, the head will weave back and forth over the center of the recorded signal causing it to vary in strength like a warped record does. The signals would be weakened and distorted by age or lack: of care. Magnetic fields of all sorts and even cosmic
rays all combine to make the data on the diskette a litlle distorted from the way it was written.

So, how does it manage to work so well. We start with something in the shift register. I's whatever was the last byte on the diskette. The read head gives us pulses corresponding to the changes in the write line described above. A pulse means there is a one bit and no pulse means there is a zero bit. The trailing edge of the pulse is all that matters. Now, as we start the first trailing edge will clear the shift register (after a few cycles) and put a one bit in for that trailing eclge. If in the mean time we got anothere trailing edge we shift in another one bit. If we didn't we immediately shift in a zero bit. Then we get in the main loop of read states. It takes 3 mini-cycles (hats 150) nanoseconds) Io process a trailing edge and be ready for the next one. They should happen exaclly 8 mini-cycles apart under ideal conditions (ic. drive is samte speed, no distorion, ete.) and callse a one bit (1) be shiffed in at state \$10. On the other hand, if the mini processor gets to state $\$ B 0$ without getting a trailing edge then a zero bit is shifted in. That means tell cycles without a trailing edge are what the machine uses to say it found a zero bit. When the last bit is shifted into the shift register (under normal conditions) then the high bit will become a one and a I.I)A \$(O)BC.X can read a negative hyte from the disk mechanism. That means the data is valid. Since the high bit of the shift register is a one, the minimachine now goes into state $\$ 12$ and waits for the next trailing edge. (I figure it usually stays there about 5 mini-cyctes) When it finds the edge we start the whole process ovet again. There are about 6 processer cycles (12 mini-cycles) between the completion of the byte formation and the clearing of the shift register for the next byte. If the 6502 reads again too soon it will get the same byte again. If it waits 100 long (that is 38 processor cycles or 76 mini-cycles under ideal conditions) it will miss a byte. Notice that reading is synchronized by the formation of negative values in the shift register and the leading high bit for the trailing edge of the corresponding pulse from the read head) of each byle It does not depend on timing loops.

This is a good place to explain auto-sync bytes They are wriften as 8 one-bits in a row followed by a zero bit by the 6502 waiting 72 mini-cycles between shift register loads. When reading begins the minimachine does not know where it is within the byte. It could begin at bit 4 since the bits are stored as one long line of pulse-no-pulses. Auto-sync pulls the mini-machine in syncronization with the way the bytes were read because the mini-machine will read 8
bits and ignore the 91h only if the 9ill is a eero bit. Wherwise the gith bit will be taken as the start of a new byte. Eight or more bytes of autu-sync are writ. tell between sectors and between the sector header and the data portion. That is enough to bring the minn machine in syne with the real bytes.
thete are changes in the read section of the Pascal I'G KOM that allow for more leeway in reading. It loohs to me like the Pascal P6 ROM is really just changed to correct a delecicacy in the original P6 KOMI. (See the comments below).

Why does the software translate all the data into 5 bit mblles and then into 8 bit values that don't have two zero bits in a row? (l.ast months installment of this series shows the software that does the converston.) Suppose we tried to read two zero bits in a row. Il they are writlen every 8 mini-cycles then lae 4 bits "10,1" would have the two trailing edges (for the one bis) 24 mini-cycles apart. It takes 3 mini-cycles to recover from the first one bit so there ate unly 21 mini-cycles in which to detect iwo zero bits. But, it tates 20 mini-cycles wibhout a pulse to signal two eero bits in a row and that leave one mini-cycles as a margin for error. This would, in pry opinion, work if the drives ran at the same speed: dif the diskelle was written on a drive that was more th.th 5% faster than the one it is being read on, then boih ecro bits would not be detected. The Pascal system writes duuble zero bits and reads them correcily and you it is possible to run pascal with the old P'6 KOMs. I hnow people who are doing it on a second controller with a third drive on it. It just meaths their drives are cluse enough to being the salle that the double aero bits can be read.

Just how is the Pascal P6 KOM different? The Pascal mini-processor ROM has S bytes changed Hon the uld P6 ROM. The listings below were prodhced by swapping the P6 and PS ROMs on an extra controlles card and moving the contents down to KAM inemory. I've saved these as B type files on a dish. (lsy the way, you need to enter them to run the Barsi Mudeling Program.) What they dos is change lice action done in states $\$ 03, \$ 13, \$ 92, \$ 82$ and most impontantly in $\$ 130$. $\$ 82$ is a dummy state that is never gone to. The change in $\$$ bio secms to have picipitated the other changes. The change in \$BO maties the mini-processor skip the first iwo states in Whe usual loop after finding a zero bit. That means lhe lirst ecro bil is signaled by tell empty mini-cycles and the following eero bits only take 8 empty minicyctes. With his change we can have (wo eerobies in d bow and still read what was written on drives of slighily ditferent speed. If we were il write more
zero bits it would increase the chances of getting lost. Besides there is nothing to gain. (More about that later.) The change in $\$ 130$ means you have to change $\$ 03$ and $\$ 13$ to act just like $\$ 02$ and $\$ 12$ did before. Wait in state $\$ 12$ or $\$ 13$ after the shift register is full until another trailing edge comes dowia the line. Then go to state $\$ 02$ or $\$ 03$. The only difference is that you go to $\$ 12$ if the last bit (low order) is a one bit and go to $\$ 13$ if the last bit is a zero bit. Both $\$ 02$ and $\$ 03$ go to state $\$ 92$ and $\$ 92$ goes to $\$ 93$ or $\$ 83$ depending on the absence or presence of a trailing edge. These are the only changes made to the old P6 ROM when it became the Pascal P6 KOM. They allow you to read the double zero bits that you always could write.

Pascal also encodes the data differently from the way the Apple DOS 3.2 encodes it. Pascal encodes a page of 256 ($\$ 1(k)$) bytes as 343 ($\$ 157$) groups of 6 bits. When being written the 6 bit nibbles are mapped mos 64 of the 256 possible 8 -bit patterns. These are the conditions on the 8-bit pallerns used by Pascial to store onto the disk surface: Bit 7 must be on and no three zero bits may be together. DOS 3.2 encodes a page of 256 ($\$ 100$) bytes as 410 (\$19A) groups of 5 bits. These 5 bit nibbles are mapped into 32 of the 256 possible 8 -bit patterns. (The conditions on the the 8 -bit patterns used by DOS 3.2, which are repeated from the last installment, are: Bit 7 must be on and no iwo zero bits may be together.) Because Pascal uses 343 and DOS 3.2 uses 410 bytes to encode the page, lascal has room on a track for 16 sectors imstead of the normal 13 for DOS 3.2. (DOS 3.0 and, as I understand, the CP/A system by Shepardson Miciosystems-who, incidentally, are rumored to be the people who wrote the original Apple DOS—use only 10 sectors per track. That gives 87.5 K byles per diskelle as compared to 113.75 K for I)(OS 3.2 and 140 K for P'ascal.) The bits aren't actually any closer or further apart but the data is encoded more differently. If you think about it the only way to make it more eificient than Pascal (besides changing the whole hardware selup) is to encode bytes as 7 bit mbbles. That would use 128 of the 2568 -bit patterns. \$1)5 cannot map into a nibbler(it's used to mart. the thom of a sector or sector head) and the high bit has to be set for the hardware to read correctly. So we need 1298 -bit values with the high bit set. That isn't possible (there are only 128 of them) so thete is no need to try to write more than two zero bits in a row as it coutdn't help us scrunch the data up) firither anyway.

The program given models the action of the miniprocessor on the disk interface card. The screen
display shows the values of most of the lines shown in the schematic on page 145. You can change the inputs to the mini-processor-Q6, Q7, Read and Write Protect - by typing 6, 7, R or W, respectively, followed by RETURN. When you just hit return, one clock cycle is simulated and all the lines change appropriately. A trace of the last few states is shown at the right side of the screen. Most of the values are labeled according to the schematic. I have found this most useful when looking at the listings of the IREAD, WRITE and RDADR routines and the RWTS mainline and FORMAT program. It would help with the Apple COPY program, too. Just look at a table of execution times for the various instructions in your listing as you follow along in the disassembly. . Hit RETURN twice for each 6502 processor cycle since the mini-processor runs off the PHIl 3 clock. Use the comments on the previous installments to decide when to change Q6 and Q7. You are on your own when deciding when to change the Read data line. I was unable to figure out just exactly how the changes in the Q6 and Q7 lines fit into the group of say 4 or 5 processor cycles taken to execute a LDA or STA. That has to fit in with when the shift register puts data on or accepts it from the 6502 data bus. I don't know enough about how the 6502 works. If someone could work this out and send timing charts I would be glad to disseminate the information.
I guess after all this I need a disclaimer. I have not been in contact with Apple Computer Co. about this. I understand they don't talk about it since there is a patent pending on the design. Everything in this article is either my idea or something told me by someone who knows something about hardware, software or the Apple rumor mill. I claim responsibility for the misteaks. Special thanks go to Tom Bonficld, Stan Brooks, Arlie Dealey and Kris whose last name I do not know. I also owe a lot to the articles listed on page AlO of the December 1978 issue of Computer Design. (In their terminology the Apple Disk Il data is encoded using a modified form of Group Code Recording (GCR). GCR is usually a double density method but the Apple Disk II uses 4 microsecond bit cells instead of the normal 2 microseconds so it gets normal capacity by using double density methods at half speed.)
FWAUG
Newsletter

22000. 20FF

Old Style P6 ROM Listing

courtesy of Arlie Dealey
$12000.20 F F$
2000- 88 日8 8888 OA OA OA OA 2008-88 C9 88 C9 88 CB 88 CB 2010- 88 C8 OB 48 OA OA OA OA 2018-88 C9 88 C9 88 CB 88 CB 2020- 88 30 B8 B8 OA OA OA OA 2028-98 D9 98 D9 98 D8 98 D8 2030- 98 DD 98 DB OA OA OA OA 2038-98 D9 98 D9 98 DB 98 DB $\begin{array}{llllll}2040-88 & B 8 & B 8 & B 8 & O A & O A \\ O A & O A \\ 2048-A B & E B & A B & E B & A B & E 8 \\ A B & E B\end{array}$ 2050- AB E8 AB E8 OA OA OA OA 2058- AB E8 AB E8 AB E8 AB E8 $2060-89$ FD B8 FB OA OA OA OA
$2068-8 B$ FB BB FB BB FB BB FB

2070- 89 FD 50 FB OA OA OA OA 2078- B8 F8 B8 F8 B8 FB B8 F8 2020- B8 B8 CB B8 OA OA OA OA $\begin{array}{lllllll}208 \\ 208-48 & 28 & 48 & 28 & 48 & 28 & 48 \\ 28\end{array}$ 2090-48 28 C8 28 OA OA OA OA 2098-48 28482848284828 | $20 A O$ | 88 | 89 | $B 8$ | 88 | $O A$ | $O A$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 20AB- $58 \quad 38583858385838$ 2080- 49 C9 5838 OA OA OA OA 2088-58 $38583858 \quad 38 \quad 58 \quad 38$ 20CO- B8 B8 B8 B8 OA OA OA OA 20C8-68 08681868086818 20D0- $6818 \quad 68180 A O A O A O A$ 2008-68 08681868086818 20EO- 8D BD 7870 OA OA OA OA $\begin{array}{llllllll}20 E 8-78 & 18 & 78 & 08 & 78 & 18 & 78 & 08\end{array}$ 20FO- OD 2D 7870 OA OA OA OA 20F8-78 $18 \quad 78.087818 \quad 78 \quad 08$

```
HIST
    5 REH
    10 REH PROGRAH TO MODEL DISK II
    20 REH INTERFACE CARD. (MINI-
    30 REM PROCESSOR OHRY.)
    50 REH BY LEE FEADOR
    60 REM
        COPYRICNT (C) }198
    REH
    100 B$="K":U$=" ": DIM FFD(6),FFE
        6),D(8),A(B),S(8),DL(8),A$(
        2),STS(30)
    05 DIM URSTR$(100),HEX$(16):HEX$
        ="0123456789ABCDEF"
    107
10 FOR I=1 TO 6:FFD(I)=0: FFO(I)
    =0: NEXT I
15 FOR I=1 TO 30:STS(I) =0: NEXT
    I
120
S(I)=0: NEXT I
25 A(5)=1: REM DEFAULT
130 ROH=8192
140 D$=": REM AD
145 INPUT "PASCAL OR BASIC ",As
147 IF AS="P" THEN PRINT D$;"BLOAD D
    ISK ROH (PASCAL), A"; ROH
150 IF A$=" }\mp@subsup{B}{"\prime\prime}{\prime\prime}\mathrm{ THEN PRINT D$;"BLDAD D
    ISK ROH, A"; ROM
155 IF A$&"P" AMD AsN"B" THEN EHD
1000 REM KKKMAIN LOOPหки
1020 GOSUB 3000
1030 COSUB 4000
1040 COSUB 5000
1050 COTO }100
3000 REH Y&F PDINT THE IN/OUTMKN
3000 REH GKx PRINT THE IN/OUTKK&
3010 CALL -936
```

3020 PRINT
3030 PRINT＂FF／D（0－5）-$)^{\prime}{ }^{\prime}$
3040 FOR I＝1 TO 6：PRINT FFD（I）： ＂＂；；NEXT I：PRINT
3050 PRINT
3060 PRINT＂FF／0（1－5）－＞＂；
3070 FOR $1=1$ TO 6：PRINT FFA（I）；
＂ $\mathrm{H} ;$ ：NEXT I：PRINT
3080 PRINT
3090 PRINT＂06 97 QA SL SR SO S1 LR R
D CLR＂

＂MiSLi＂＂；5R；＂＂＇SO；＂＂
iS1；＂＂iURITE；＂＂iREAD；＂＂ ；CLR
3130 PRINT
3140 PRINT＂ROM ADDRESS－）＂；
3150 FOR I＝8 TO 1 STEP－1：PRINT A（I）；＂＂：NEXT I：PRINT
3160 PRINT
3170 PRINT＂ROH OUTPUT - ）＂；
3180 FOR $I=8$ TO 1 STEP－1：PRINT D（I）${ }^{\prime \prime \prime}{ }^{\prime \prime}$ ：NEXT I：PRINT
3190 PRINT
3200 PRINT＂SHIFT REG \rightarrow＂；
3210 FOR I＝8 TO 1 STEP－1：PRINT S（I）${ }^{\prime \prime} "_{i}$ ：NEXT I：PRINT
3220 PRINT
3225 IF HDHR 1 THEN HOH＝1：IF HDLS 1 THEN HOL $=1$
3230 PRINT＂DATA BUS \rightarrow＂；HEX （HOH，HDH）；HEX（HOL，HDL）
3240 PRINT
3300 REH «幺 CET NEW STATE \＃K
3305 UAL $=0$
3310 FQR $I=1$ TO B
3320 IF A（I）THEN VAL＝VAL＋2＾（I－ 1）
3330 NEXT I
3340 FOR $I=1$ TO 14
$3350 \operatorname{STS}(\mathrm{I})=\mathrm{STS}(\mathrm{I}+1)$ ：REM KEEP 15 ST ATES
3360 NEXT I
3370 STS（15）＝UAL
3375 REH \＃${ }^{3}$ PRINT 15 STATES BACK иः
3380 FOR $I=1$ to 15
$3390 \mathrm{HI}=5 \mathrm{SS}(\mathrm{I}) / 16+1: L 0=S T S(1)$ MOD $16+1$
3400 UTAB I：TAB 35
3410 PRINT HEX $\$(H I, H I)$ ；$H E X \$(L O, L O)$
3420 ⿳⺈
3500 REH K DRAW URITE LINE KKй
3505 PRINT：PRINT
3510 IF NOT LRITE THEN URSTR\＄（ LENS URSTR $\$$ ）+1 ）$=1 / \$$
3520 IF LHRITE THEN LRRSTR\＄（ LEN（LIRSTR\＄ ）+1 ）$=\mathrm{B} \$$

3530 IF LEM（LIRSTR $\$ 138$ THEN URSTR $=\operatorname{LRSTR} \$(2)$
3540 PRINT URSTR\＄；
3550 RETURN
4000 REM ：\quad и LET CHANGES BE MADEMa
4010 UTAB 20：TAB 1：CALL－958
4015 PRINT＂YOU MAY CHAHGE AS，Q7，RD AND LR PROT＂

4020 PRINT

4030 INPUT＂TYPE 6，7，R OR W＂，A\＆
4045 IF $A S=$＂R＂THEN READ $=$ NOT READ
4060 IF $A=" 6 "$ THEN $06=$ NOT 06
4070 IF $A S=" 7 "$ THEN $67=$ NOT 07
4073 IF $A \&=" U "$ THEN $S R=$ HOT $5 R$
4090 IF A $\$=$＂＇＂THEN RETURN
4100 GOTO 4010：REM MORE CHAHGES
5000 REM Max DO OHE CLOCK CYCLEß：
5010 GOSUB 6000：RET FLIP FLOP
5020 GOSLH 8000：REM SHIFT REG
5030 GOSL 7000 ：REH ROH
5040 RETURN
6000 REH＊HKSET UP FF AND CLDCK ITKи＊
$6001 \operatorname{FFD}(1)=D(8)$ ：REM SET DATA IN
$6002 \operatorname{FFD}(2)=0(7)$
$6003 \mathrm{FFD}(3)=\mathrm{D}(5)$
$6004 \mathrm{FFD}(4)=\mathrm{FF}(5)$
6005 FFD（5）＝READ
6006 FFD（6）$=D(6)$
6009 REM nh \quad CLOCK IT ACROSS：nห
$6010 \mathrm{FOR} I=1$ TO $6: \operatorname{FFQ}(1)=\mathrm{FFD}(\mathrm{I})$ ： NEXT I
6020 RETURN
7000 REH $\because * K S E T$ UP ROA ADDR，GET DATA RRR
$005 \mathrm{~A}(1)=\mathrm{FFQ}(6)$ ：REM SET THE ADDR L INE
7010 A（2）$=0 \mathrm{~A}$
$7020 A(3)=06$
$7030 \mathrm{~A}(4)=$ Q 7
$7040 \mathrm{~A}(5)=$ NOT（FFQ（4）AND（ NOT FFQ（5）））
$7050 \mathrm{~A}(6)=\mathrm{FFQ}(3)$
$7060 \mathrm{~A}(7)=\mathrm{FFQ}(2)$
7070 A（ ${ }^{2}$ ）＝FFG（1）
$7075 X=A(6): A(6)=A(B): A(8)=X$
7080 LRITE＝FFQ（1）：REM SET LRITE
7090 OFFSET＝0
7095 REM KhKLOOK INTO ROH FOR DATAKKK
7100 FOR I＝1 TO B
7110 IF A（I）THEN OFFSET＝OFFSET＋ $2 \hat{2}(1-1)$
7120 NEXT I
7130 WAL＝PEEK（ROM＋OFFSET）
7140 FOR I＝1 TO 8
$7150 \mathrm{D}(\mathrm{I})=$ VAL MOD 2
$7160 \mathrm{UAL}=\mathrm{VAL} / 2$
7160 AL＝UAL

7171 REM M甘RSWAP SIMLE DAIN LIMES ARE
SUAPPED ON THE P5 ROMEKM
$7172 x=D(8): D(8)=D(5): D(5)=x$
$7174 \mathrm{X}=\mathrm{D}(7): \mathrm{D}(7)=\mathrm{D}(6): \mathrm{D}(6)=\mathrm{X}$
7200 RETURN
$8000 \mathrm{SL}=\mathrm{D}(3)$ ：REM SET OUTPUTS
8010 S1＝D（1）
$8020 \mathrm{~S} 0=\mathrm{D}(2)$
$8030 \quad C L R=D$（4）
8080 IF NOT CLR THEN 8270
8090 IF NOT（SI OR SO）THEN REIURN
8100 IF S1 ARD 50 THEN 8400
8120 IF 50 AND（ NOT S1）THET： 8200
8130 IF NOT（S1 AND（ NOT SO））THEN RETURN
8140 REM MaSHIFT LEFTax
8150 FOR I＝8 TO 2 STEP－1
$8160 \mathrm{~S}(\mathrm{I})=5(\mathrm{I}-1)$
8170 NEXT I
$8180 \mathrm{~S}(1)=5 \mathrm{~L}$
8190 G0T0 8600
8200 REM WMSHIFT RICHTK
8210 FOR I＝1 TO 7
$8220 \mathrm{~S}(\mathrm{I})=\mathrm{S}(\mathrm{I}+1)$
8230 NEXT I
8230 NEXI $8(8)=5 R$
8250 c0T0 8600
8270 REM MYCLEAR SHIFT REG：＂
8280 FOR $\mathrm{I}=1$ T0 8
$8290 \mathrm{~s}(\mathrm{I})=0$
8300 NEXT I
8310 G0T0 8600
8400 REM MAKLDAD SHIFT REG日M
8410 INPUT＂LOADING SHIFT REG．ENTER
HEX \＄＂，A\＄：IF LEN（A§）（1 THEN 8410
8420 D1＝ASC（As）：D2＝ASC（＂0＂）：IF LEN（A§） 11 THEN D2 $=\operatorname{ASC}(A \$(2$ 1）
8430 D1＝D1－ASC（＂0＂）：D2＝D2－ASC（ ＂0＂）
8440 IF D1 19 THEN D1＝D1－7：IF D2．） 9 THEN $02=02-7$
8442 IF LEN（AS）$=1$ THEN DTA＝D1
8444 IF LEW（A\＆）II THEN DTA＝01：16 $+02$
8450 IF D1（O OR D1 115 THEN 8410 ：
8470 FOR $I=1$ TO 8
8480 DL（I）$=$ DTA MOD 2
8490 DTA＝DTA／2
$8495 \mathrm{~S}(\mathrm{I})=0 \mathrm{~L}(\mathrm{I})$
8500 NEXT I
8540 GOTO 8600

Olsk Card Minl-Processor States (WRITING)
by Lee Meador

$$
\lll \quad \text { WANT AND DON'T WANT ADS } \ggg
$$

2 DI/AN PRINTERS. Used and for sale in good condition with I/O device and software. RS-232. Lewis Melton, 981-8866.

FOR SALE: HEATH H-14 Dot Matrix Printer RS232 or current loop interface, high speed, forms control, three print sizes..... $\$ 900+$ tax at Heath. Will sell for $\$ 500$. See Mike Kramer or call at 358-6687 after 5.

FOR SALE: Apple Integer Card $\$ 150$. See Mike Kramer or call 358-6687 after 5 .

SANYO MONITORS AVAILABLE IN GROUP PURCHASE. We need a minimum of 6 ordered if we are to get the special prices.

$13^{\prime \prime}$ color	$\$ 430$.	+ tax	(30-day delivery)
$9^{\prime \prime} \mathrm{B} \& W$	169.	"	(stock)
$12^{\prime \prime} \mathrm{B} \& W$	200.	"	$(8-10$ days delivery)
$15^{\prime \prime} \mathrm{B} \& W$	250.	n	(stock)

If you are interested contact Ray Essig, 493-9980 or 497-7165 (evenings).

BACK ISSUES OF APPLE BARREL are for sale in limited quantities! Many of you have inquired about their availability. The following back issues can be bought by mail for $\$ 1.00$ each, postpaid:

```
vol. 2 no. 5 August, !79
vol. 2 no. 6 Sept/Oct, '79
vol. 3 no. l January, '80
vol. }3\mathrm{ no. 2 February, '80
vol. }3\mathrm{ no. 3 Mar/Apr;' }8
vol. 6 no. 6 August, !80
vol. }7\mathrm{ no. 7 Sept/Oct, !80
vol. }8\mathrm{ no. }8\mathrm{ November, '80
```

This is a chance for newer members of HAAUG to catch up on programs, news, reviews, etc. Sorry, but there will be NO reprints when these are gone. Make checks payable to H.A.A.U.G. and send to Apple Barrel; Ed Seeger, Editor; 4331 Nenana Drive; Houston, TX; 77035. Please allow 2 weeks for delivery.

SUPER.TEXT WORD PROCESSOR, version 2, by Muse for sale at \$85 in mint condition. This is one of the "big two" (EasyWriter is the other) implemented on the Apple in the $\$ 100$ range. Worth $\$ 100$ if you wish to trade it in for their Super. Text II system at $\$ 150$. Has math mode (!), built-in copy routine for files, and displays upper \& lower case ON SCREEN with Paymar chip. Ed Seeger evenings at 723-6919.

Dear Dr, APPIE:

The sales cierk explained the situation to me then bought my new fipple, tut in the joy of a new toy 1 forgot, what are the language capabilities within the Apple computer and its augmentations? i have an Rpple II Plus.

Signed, Coming Down to Earth

Dear Down to Earth:

You are reminded that both the fipple II and the fipple II Pius computers are identical except for the basic language Ron chips built into them.
fPple II computers have Integer Basic burned into the at the factory. A second language, Gpplesoft Basic, is auailable to the Apple Il through a cassette conversion program which used to comefree with the computer purchase. For those mith disk drives, the 3.2 D0S master Diskette has included a copy of the same fiplesoft conversion progran. one has to load and run the conversion program before operating any prograb uritten in the APFlesoft language, Since this is a bit awkward and time consuming, FFple manufactures a firmbare fipplesoft card which prouides instantaneous transition in and out of ffplesoft when ever required. pascal language can be added to the Apple through purchase of the Apple Language RAM card, PROM chips and Pascal compiling program diskettes, all of which requires the user to have at least one disk drive to start with. fiditionally as a bonus, the Paseal System has an accompanying diskette free which Frovides for program operations in Applesort. Lastiy, Fortran language capability can be added to the above system through tur additional diskettes. Moreover, cophl and other language capabilities are planned to come into the RPple the same way.

Now, fPple II Flus computers have Rpplesoft Basic manufactured into them to begin with, but no Integer. There are no Integer cassete conversion progran available at this time, however ffere is an Integer Rasic conversion program on diskette just now coming on the parket whigh permits operation of Integer programs on the computer. A firmbare Integer card (counterpart to the firmware Applesoft card mentioned aboue) is auailable for direct electronic transition into that language when inserted into the APple II Plus, Of course Paseal can be obtained through the same Fascal System discussed earlier and the same aceompanying diskette brings in Integer js its extragift to Rpple Il plus users.

Incidentally, the $A s=e m b l y$ language of both computers is exposed through the system monitor. The table below gives language availabilities引t a glance:

Language source
Built into Computer Cassette Diskette
Firmware Card ${ }^{3}$
Language system 4

Apple II
Integer * fissembly APPlesoft' Applesoft
Integer \leftrightarrow RPPIesoft
Pascl, AFisft, Fortrn ${ }^{5}$ Pasci, Intgr, Fortrn ${ }^{5}$
HPple If Plus
RPplesoft R Rssembly None Yet Integer ${ }^{2}$
Applesoft \rightarrow Integer

```
Library
Note 1. Free. HARUG
Note 2. Retail \(\$ 20\)
Mote 3. Retail \(\$ 200\)
Note 4. Retail \$500
Note 5. Retail \$200 extra
Note 1. Free, HARUG Library
Nate 2. Retヨil $20
Note s. Retail %20a extra
```

Qemarks ROM
12k RAM USed 12k RAM used Rutomatic
Meed disk drive

Houston Area Apple Users Group APPLE BARREL
Ed Seeger, Editor
4331 Nenana Drive
Houston, Texas 77035

BULK RATE U.S. POSTAGE PAID HOUSTON, TEXAS PERMIT 3936

(713) 723-6919

H.A.A.U.G

Postmasters:
Address Correction Requested:
Forwarding and Return Postage Guaranteed

