
H.fi.fi.U.G.

HQuaroN anoup

THE APPLE BARREL

< SINGLE COPY PRICE $1.00 >

VOLUME 3 NO. 7

President, Bruce Barber

Editor, Ed Seeger

SEPTEMBER/OCTOBER, 1980

<« CONTENTS »>

Page 2 Club Notes

Page 4 Apple Computer, Inc., stock report

Page 5 File Cabinet Partially Exposed Lee Gilbreth

Page 7 Backspace as Delete Key Kevin Winter

Page 8 Mountain Computer Music System Pat McGee

Page 9 Pascal Problems Pat McGee

Page 12 Pascal System Date John Strait

Page 13 Screen Create Program Bruce Barber

Page 15 (phantom page) editor's error 1

Page 19 DOS 3.2 Disassembly Lee Meador

age 32

ailer

from FWAUG Newsletter, Fort Worth, TX, March, 1980

Want and Don't V7ant Ads

Check your renewal date, please

<« CLUB NOTES »>

Houston Area Apple Users Group
APPLE BARREL

4331 Nenana Drive

Houston, TX 77035

The HOUSTON AREA APPLE USERS GROUP is
an Apple II user club, not affiliated
with Apple, Inc., or with any retail
computer store. HAAUG is a member of
the International Apple Core and
supports its purposes and
publications. General membership
meetings are held on the second
Wednesday of each month in the rear
chapel of Memorial Lutheran Church,
5800 VJestheimer, right by the Jungman
Branch Library. They start at 6:30
p.m. An additional software swap is
held the last Saturday of each month
at the clubhouse of the Houston

Amateur Radio Club, 7011 Lozier
Street, east of the Astrodome. These
Saturday meetings begin at 2:00 p.m.

OFFICERS / EXECUTIVE BOARD

President

Vice President

Treasurer

Secretary
Software Lib.

Hardcopy Lib.
Hardware Chair

Business Uses

Membership
Newsletter Ed.

497-

426-

Bruce Barber

(vacant)
Ray Essig
James Odom

Dennis Cornwell774

Leslie Doest 472

David Marchand 497
Rudge Allen 622
Lee Gilbreth 342

Ed Seeger 723

469-5805

•7165

•3970

•0671

•5485

•7366
•3979

•2685

•6919

MEMBERSHIP INFORMATION

Dues are $18.00 per 12-month period
for regular memberships, $6.00 for
students through high school and where
no adult member of the family is an
Apple user. Please make checks
payable to "Houston Area Apple Users
Group," and mail to Lee E. Gilbreth,
Membership Chair, 3609 Glenmeadow,

Rosenberg, TX 77471. This includes a
subscription to APPLE BARREL, which is
published nine times a year.
Newsletter exchanges with similar
clubs are invited.

APPLE BARREL REPRINT POLICY

Unless otherwise indicated within the
program or article, any ORIGINAL
material published herein may be
reprinted without permission by any
non-profit Apple club, group or
newsletter, PROVIDED proper credit is
given to the APPLE BARREL and the
article or program author.

SPECIAL INTEREST GROUPS

Members who share a common interest
are encouraged to form Special
Interest Groups to more fully explore
their fields. Meetings may be
arranged by common consent of the
group and will ordinarily have one
member who serves to coordinate or

convene the meetings. If you would
like to start a group around any given
interest, please contact one of the
club officers. If you would like to
be in touch with others who share one
of the following interests with you,
please phone the coordinator.

Current groups are:

1) BUSINESS APPLICATIONS
Coordinated by Rudge Allen,
622-3979

2) PASCAL USERS

Directory being assembled
Pat McGee coordinating,
663-6806

This Special Interest Group is
to meet and discuss aspects of
Apple's Pascal language and to
exchange programs.

3) MODEM USERS

Directory being assembled
Herb Crosby coordinating,
497-1061

4) HAM RADIO OPERATORS
Coordinated by Ed Seeger, WB5PTV7
723-6919

5) NEW MEMBERS

Coordinated by Lee Gilbreth,
342-2685

6) EDUCATIONAL APPLICATIONS
Coordinated by Darrell Kachilla,
498-0186

7) BEGINNERS' PROGRAMMING

Coordinated by John C. Whiteman,
794-7267 (home)

This Special Interest Group is
to meet and discuss Integer Basic
and Applesoft,

8) FILE CABINET

Coordinated by Lee Gilbreth,
342-2685

Purpose is to understand, expand
and enhance the File Cabinet

program.

APPLE BULLETIN BOARD SYSTEM

The Houston Area Apple Users Group
supports an ABBS evenings and
weekends, 6:00 pm through 8:30 am, and
all weekend long. Feel free to
sign-on and place your want-ad,
meeting notice, request for help,
Aggie joke, etc. Any ASCII terminal,
Apple computer or not, with suitable
modem or coupler, will give you ABBS

THE WALL STREET JOURNAL

ill

"No, Baxter, you're not being replaced by a
computer, only a sillcone chip."

capability. Call:

713/654-0759

SYSOP is Rudge Allen, 622-3979.

Apple Fervor
Puts Brokers
On the Spot

By Tim Metz and Paul Blustein
Staf/ Reporters of The Wall Street Journal

Every speculator in hot new issues wants
a bite of Apple-Apple Computer Inc.-but
most will be lucky to get even a bit.

The personal computer manufacturer's
first public sale of stock seems likely to be
come one of the hottest offerings of all time.
"Our phone has been ringing," a Minne

apolis broker says. "Sometimes it'll be peo
ple who may have had accounts with us in
the past. Sometimes it's people wanting to
open new accounts. All of a sudden they
want to be friendly. They want a couple of
hundred shares of Apple."

Says Dan Mauidre^, a securities analyst
at Merrill Lynch, Pierce, Fenner & Smith
Inc.; "Even my brother, who invests in the
stock market only on Tuesdays in Leap
Year, called the other day to ask what I
know about Apple Computer. I said, 'My
God, Marty, not you, too!' " Mr. Mandresh
says he knows little about Apple.
A date hasn't been set for the Apple stock

sale. Lately, share prices of nearly all
^ companies in

the personal-
computer busi-
ness have hit

record

New issues of

computer and

V.'.Vt'.VtVtV# Wgh-tech-

sdd publicly in
the 12

months have

soared in price

viPPIQ by as much as
50% or more

above initial of-
■ "l^ ■ fering prices.

The demand for Apple is especially keen
because the company ranks with Tandy
Corp., maker of the Radio Shack's TRS
model personal computers, as a leader in
the industry. Some people expect Apple
sales to reach $300 million next year from
some $150 million this year and only $7 mil
lion two years ago.

AH but a minority of would-be Apple buy
ers seem likely to come away from the pub
lic offering empty-handed. The supply is ex
pected to be so scant that brokers ̂ ready
are devising allocation methods. At the Min
neapolis broker's office, for example, cus
tomers' men will draw straws to determine

who gets the office's allocation. The inves
tors who do get to buy the stock are likely to
be well-heeled customers of long standing.

Good Customers Favored

"Those who give us the business get the
business," says Charles Ness, a broker for
Shearson Loeb Rhoades Inc. in Seattle. "A
client who's done a good bit of business with
us is given first crack at a hot new issue."

Another broker insists that a customer's
"style," not just the size of his account, will
influence his chances to get Apple. The bro
ker, Randy Estes, with E. F. Button & Co.
in San Diego, says that if he gets any shares
to sell, "I'll go to the people who'll buy any
new issue. The ones who are with you
through thick and thin."

Complaints Likely
Some unsatisfied customers are likely to

complain. If they can't buy Apple in the pub
lic offering, they'll have to buy it afterward
in the secondary market, presumably at a
much higher price.

William M. LeFevre, investment policy
vice president at Purcell Graham & Co., a
smaller Wall Street securities firm, recalls
some irritated customers following a hot '
new issue, Wang Laboratories, back in 1%7.
"I was allotted only five shares," he says, (

I "and I decided to sell all five to one of my
best customers. But he was a loudmouth. '
When the stock shot up to $50 from an issu
ing price of $10, he told people at the golf
club that he had 500 shares. Word got
arou.id and my other good customers asked
how 1 could get 500 shares for a simpleton
like him and couldn't get any for them."

For big institutional investors, the
jockeying for chunks of Apple won't begin
until Apple files its preliminary prospectus
describing the terms of its offering with the
Securities and Exchange Commission. The
filing could come any day. "It's safe to say
that everybody is going to be able to find
some money to buy Apple stock," says Man-
own Kisor Jr., senior investment officer at
Detroit Bank & Trust Co.

Naiitilas Fiintl Purchases

More Apple Computer Sttx'k
BOSTON-Nautilus Fund, a closed-end

unit investing in so-called emerging compa
nies, says it bought another 20,000 shares of
Apple Computer Inc., expected to be a hot
stodc when its shares go public later this
year.

The latest purchase, like the others was a
private transaction. It increases Nautilus's
holding in Apple to 180,000 shares. Price of
the latest batch was $8.25 a share.

Nautilus, managed by Eaton & Howard,

Mum's the Word

Distinctly worried over the hoopla are
managers at the prestigious investment
banking firm of Morgan Stanley & Co.,
which is expected to become the lead under
writer of the Apple issue. Although Morgan
declines to comment, the firm tacitly ac
knowledged that it is being besieged with in
quiries about Apple. It sent its staffers a
memo the other day pointing out that under
writers for the issue haven't yet been
named, and that any comment about Apple
is inappropriate. Morgan's fear is that all
the chatter over Apple might smack to the
SEC of unlawful touting, or blue-skying.

Veteran Wall Street securities men worry
that demand could push Apple's offering
price or later prices to unrealistically high
levels.

"We're getting into the silly season," the
Tucson broker says of the new-issue market.
"It's really getting wild."

Mr. LeFevre, comparing the demand for
Apple with other alluring things, observes
that "it could turn out that the anticipation
is so much better than the realization."

Reproduced from

The Wa11 Street Journal

October 10, 1980

THE WALL STREET JOURNAI., > tr
Wednesday, Oct. 1, 1980

Vance Sanders Inc., said that it is boosting
the carrying value of all 180,000 shares to
$8.25 each from $2,625. Overall, Nautilus
says, this will add about $1.25 a share to the
fund's net asset value.

As of June 30, the fund's net asset value
was $17.66 a share.

Because the Apple shares aren't publicly
traded. Nautilus said, their value is based
on the fund's "best judgment," rather than
market price. Apple plans a $25 million of
fering in November or December.

FILE CABINET PRRTlflLLY EXPOSED

In the heart oF FILE CABINET are two subroutines which/ it understood/ should
dispel 1 much ot the mystery trom this popular program tound in our club Software
Library, Thest: routines are called upon sixteen times, directly and countless,
times indirectly during a tull running ot the program. This is no small wonder/
tor they are the SAVE FILES and F;EflD FILES ot the data nianagement system which
has the disk driue hopping back and torth sauing and retrieving text tiles.

Since both routines, are mirror images ot each other/ they should be viewed
together:

4280 REM * * * SAVE FILES * * *

4290 IF F$< >"INDEX" THEN FF = 1

4300 PRINT D$"OPEN"DB$" "F5:"FILE"
4310 PRINT D^-URITE"DB1^" "Ft^FILE*
4320 PRINT NR

4330 FOR J = 1 TO NR

4340 ON FF GOTO 4390

4350 FOR I = 1 TO NH

4360 PRINT N$CJ,I)

4370 NEXT I

43S0 GOTO 4400

4390 PRINT R$Uj

4400 NEXT J

4410 PRINT D$"CLOSE"

4420 FF = 0

4430 RETURN

4110 REM * * ♦ READ FILES ♦ * *
4120 IF F$< >-INDEX- THEN FF = 1

4130 PRINT D^'OPEN-DB^" °F^"FILE'
4140 PRINT D$"READ"DBl:" "F$"FILE'

4150 INPUT NR

4160 FOR J = 1 TO NR

4170 ON FF GOTO 4238

4180 FOR I = 1 TO NH

4190 INPUT N$<J>I>

421© NEXT I

4220 GOTO 4240

4230 INPUT R$CJ)

4240 NEXT J

4250 PRINT D$"CLOSE"

4260 FF = 0

4270 RETURN

The titles and line numbers are naturally difterent and where one WRITES the
tile the other READS it. The act ot writing is through the PRINT command and the
act ot reading is through the INPUT command. The varibles used above are*,

F$ = Type ot File <eg. BRSENAME. HEADER. INDEX. etc>

FF = Flag tor type ot Array stored <eg. 0=one dimerision/l=two dimension)
DB$ = Name ot Data Base

NR = Number ot Records <data elements tollowing> in the Text File
NH = Number ot Headers that make up a Record
R$<J> = Data Array <one dimensional)

N$<J.I> = Data Array <two dimensional)

All text tiles of FILE CABINET are ot the Sequential type. <See DOS Manual.)
The first informational element stored will always be the total number ot Record
elements expected to follow. Files therefore/ graphically look like this;

TEXT FILE NR R$<1) R3:<2) . . . R^<J) . .. R$<NR)
— -

HEADERFILE 7 H#1 H42 • • • m?

DATRBRSEFILE 3 DB#1 DB#2 DB#3
RPTNAMEFILE 4 RN#1 RN<?2 RN#4

Actual Record data is stored in the same manner, Illustrated below would

a three header tile with tour Records ot information;

TEXT FILE NR N$C1.1) N$<i/2) NT <1/3) N$<2/1) ... NS<J/I) ... Nl;<NR/NH)

INDEXFILE 12 R#1.H1 R#1/H2 R41/H3 R#2,H1 R#4/H3

Even the REPORT FORIIfiT File follows the sane pattern. It signals the total
number of data elements to follow and then stores them in blocks of three.

The example below would be for a Report Format File containing five headers:

NS K(l) K<2> K<3) . . .K<I-2) KCI-1) K(I> .. .K<3*RH-2> K<3*RH-1> K<3aRH> K<0) K<NR)

17 NO. Tab Flag ... No. Tab Flag Flag Tab
of for total of for total for Headr

Mil Htl Nil Ht5 Hf5 H#5 TOTRL TOTAL

The number "N^* states how many elements are in the file. The K<1) element con
tains the Header Number for the first column in the report* The KC2> element

gives its Tab Location and the K<3> element determines if it is to be included

in the Totaling scheme <8 - Not to be Totaled^ i s Include in Totals). After
all Headers are positioned in the report, the K(0> Flag triggers the Grand

Totaling process <0 s Make no Totals, 1 = Hake Totals). Element K<NR) is tacked

on at the end to give the Tab Location for TOTAL in the report.

Of course there is a lot more to FILE CABINET than comprehending the basic
structure of its Text Files, in time, we shall study other aspects of the

program and expose all. <<< Lee Qilbreth >>>

WANT TO BUY AN APPLESOFT ROMCARD for a low to reasonable
price. Fred Fuchs, 749-3235 or 781-6968.

<« WATCH THIS SPACE! »>

Coning very soon in your NOVEMBER APPLE BARREL is more
Pascal notes from Pat McGee; CCA Data Management System
Version 5.2 Upgrade memo; information on the UCSD Pascal
Users Group Library (v;hich we have on disk ready for
distribution!); and the usual assemblage of notes, code and
ads that make life worth living.

In the DECEMBER APPLE BARREL, look for a full review
of the "almost perfect" MAGIC WAND word processor, which is
now implemented under CP/H on the Apple! This is a program
which, like Visicalc, is by itself sufficient reason to own
an Apple. We will also bring you a holiday gift of good
programming from other Apple-oriented nev;sletters from
throughout the country.

USING THE BfiCKSPflCE flS fi DELETE KEV

by Kev^in Winter

The following program takes advantage of the zero page location $38-39^ which
contains the vector to a user's key-in routine <default » i^FDlB) . The program is
locatable anywhere in memory and is only 26 bytes long. The simple format will

allow anyone to extend the progratn to add any number of special

I 'used the mini-assembler to enter the following code;

5066: BIT SC000 CHECK FOR KEV PRESSED

5003: BPL $300 IF NOT PRESSED GOTO $308

5005: ST8 <$2S> > V GOT KEV - PUT ON SCREEN

5007: LT>8 $C000 PUT KEV INTO flCCUMULRTOR

5008: BIT $C010 CLERR KEV STROBE

500d: CMP #88 IS KEV fl BflCKSPRCE

500F: BEQ $312 IF NOT GOTO $312

5011: RTS IF VES RETURN TO NORMRL INPUT

5012: PHR PUSH BRCKSPRCE INTO STACK

5013: LDR #80 LORD flCCUM WITH fl SPACE

5015: DEV DECREMENT SCREEN POSITION

5016: ST8 <$28> * V STORE SPACE ON TOP OF BAD CHRRRCTER

5018: PL8 PULL BRCKSPRCE FROM STACK

5019: RTS RETURN TO NORMAL INPUT
To use rout ine with DOS you need:

5020: PHR SAVE flCCUM TO STACK

5021: LDR #$00 STORE LOW BVTE ADDRESS

5023: STR $33 IN $38 <KEV-IN VECTOR)

5025: LDR #$50 STORE HIGH BVTE ADDRESS

502?: STR $39 IN $39 <KEV-IN VECTOR)

5029: JSR $03Efl GOSUB TO DOS HOOKS

502C: PLR GET flCCUM FROM STACK

502D: RTS RETURN TO MONITOR/BRSIC

Or one can use this entry;

5088: 2C 00 C0 10 FB 91 28 RD

5008: 00 C0 2C 10 C0 C9 88 F0

5010: 01 60 48 89 80 38 91 28

5018: 63 66

<To use with DOS>

5020: 48 89 00 85 38 89 50 85

5028: 39 20 ER 03 68 60

To activate the function., i f you use code S5000-5019/ just enter '*38: 08 50'

into the Monitor^ which is the address of the code. Then you can use DELETE in

machine code Of enter BASIC and it will work. If you have a disk, you will need

the code S5028-502D* by entering '*5020G' if in Monitor, or 'CALL 20512'* if in

BASIC.

The idea fo»- this article came t-rom ' CP/M Backspace MOd' by Rod Hallen <pg 48

Rug 80 issue of Kilobaud/Micro.),

8

A BRIEF REVIEW OP THE MOUNTAIN HARDWARE MUSIC SYSTEM:

Incredibly disappointing.

A SOMEWHAT LESS BRIEF REVIEW OF THE MOUiJTAIH HARDWARE MUSIC SYSTEM:

It is pathetically obvious that this product was released before it
was finished. I find it hard to imagine that a normally reputable
company like Mountain Hardware could not know about the major bugs and
shortcomings in the manual and especially the software. After buying
this product because of their reputation, 1 will never again buy a
Mountain Hardware product without examining it in detail first. Well,
enough moaning, on with the review.

First, the hardware: Its great. It sounds excellent when compared
with an ALF system. The system comes with several instruments
preprogrammed. The organ really sounds like an organ. A real pipe
organ sounds better, but the MusicSystem could hold its head up among
moderately priced home organs.

Now, the software. This is really a mixed bag. If you were looking
just at the specifications, it would look great: input from keyboard,
light pen, or paddles; ability to input dynamics and accents; ability
to input chords; ability to play different parts with different
instruments; etc. It all sounds great. And, if you have a semi-
infinite amount of patience, it is. And therein lies almost the
entirity of my disappointment. It takes so long to do each and every
little thing that it isn't fun. Even just putting in notes takes long
enough to be annoying. The wait after you decide to play something
until the music starts can be downright stultifying. When 1 had a set
of ALF boards, 1 had to force myself to work instead of playing with
the music stuff. Now, with the Mountain Hardware MusicSystem, 1 have
to force myself to use the music stuff instead of working. And that
makes for a lousy toy.

1 won't mention the many bugs that 1 have found in the software and
the manual, except to say that most are glaringly obvious, and show a
total disregard for anyone who should ever have to actually use this
product after they have bought it.

Why haven't 1 sold mine yet? Well, mostly because of faith. Faith in
Mountain Hardware that they will fix the obvious defects (because they
won't sell many more if for nothing else), and faith in the Users
group that Mountain Hardware is starting and supporting. This is too
good a piece of hardware to be saddled with such a lousy software
driver for long. However, if someone offers me a good price now, I'd
probably take it.

Recommendation: If you want a great sounding music system and think
you have the patience of Job, think about getting one now; but try to
do some real music on it before you buy. Or, wait six months and see
what changes have come down the road on the software. If you can't
wait six months and want a music system to have fun with rather that
serious work, consider the ALF system. It is fun.

9
Pascal Problems

bv Pat McGee v

P.O.Box 20223

Houston» Texas 77025

This is a list of problems I have had usins the Apple Pascal svstem. Some
are outright bugs? uihile others are problems caused bv poor documentation.

Long Integers!

I expected them to work Just like regular integers* except hold bigger
numbers. Thev don't. In some places thev do* in others thev cause
compilation errors* and sometimes thev Just plain don't work.

Thev do uiork as expected in most arithmetic expressions and a parameters
to functions and procedures.

Trying to have a function return a value of type long integer causes a
compilation error. The Apple Hot Line said that this was a limitation that
had not been documented* not a bug. Long integers are similar in internal

format to strings* and strings cannot be used in this manner.

There are several bugs involving long integers.
1. Typing a 10 digit number when the system is executing

Read(input*I) where l!lntegerC93

usually causes the system to crash. The only way to recover is to reboot.

2. Sometimes* keying in any number when the system is trying to read a long
integer will cause it to »STK OFLOW* and reinitialize itself. I haven't

found exactly what things work and what don't.

3. The expression TRUNC(Adr - 32768) where Adr! Integer-

causes *STK OFLOW*, but TRUNC(Adr - 16384 - 16384 > does not.

Mod Function!

This does not work properly. Jensen & Wirth (p13) state that

A Mod B = A-((A div B)*B>.
However* in Apple Pascal* it is implemented as

A mod B = !A1-(<!A! div B)*B).

This can be seen by looking at -1 mod 2. This is particularly bad when
looking at the definition of modulo munbers from back in high school. I was
taught that if A mod B = C then (A+B) mod B was also = C. The implementation

does not match this.

Arctangent Function ATAN!

This function returns the wrong angle for tangents less than -1. Use the

following code when you want to use this!

If Tangent < 0 then

Angle != -Atan(—Tangent)

E1 se

Angle != Atan(Tangent)?

For Loops!

I was trying to time a for loop* so I typed im

Writeln(outPut*'BEFORE LOOP')?

For i != 0 to 32767 do Cnothingl!

Writeln(output,'AFTER LOOP')?

The computer printed "BEFORE LOOP"* then I waited* with cocked

stopwatch. After a while* I decided an alarm clock would be a more

10

appropriate instrument. Even later* I was considerins a calendar. Wel l*
back to the drawing board. Changing 32767 to 32766 produced a nice quick
loop* but changing it back to 32767 caused another infinite wait.

Apparentlv, the compiler designers blew it. The value of I should have
been checked against 32767 before being incremented* or the increment should
have checked for overflow.

To avoid the problem* either use 32766 or do the followingi
Const Max = 32767

Tvpe LoopControlState = (1ooping*thru)*
Var State!LoopControlState*

I! Integer-

Begin

I := 0* State != looping*

Repeat

C Whatever }

If I < Max then I := I+l else State := thru?
Until State = thru?

I use this instead of anv for loop* because it is more versitile* and
because it works in all cases. There are other reasons involving the use of
variables that do not go outside the specified range.

^ a. JT"
Filer W(hat Command: i

This command tells you the name of the workfile and wheljher it has been
saved or not. In a single drive system* it works file. But** if you G<et
file from a different disk drive than you booted from* do something
then S(ave it back to the other disk* the W<hat command thinks that
workfile has not been saved* when in fact it has been.

Filer T(ransfer Command:

If -rou have two disks in the system at the same time and they have the
same name* DON-T USE THE T COMMAND!!!!!!! You will wipe out part of at least
one disk!. The filer gets very confused under these circumstances* and is
apt to wipe out the disk 'vou are transferring from* as well as the one you
are transferring to. Furthermore* you sometimes don-'t find out until later-
Just which files are messed up. The-v will look Just fine in the director-'r*
but the contents will be so much garbage.

If --i'ou must to this* first change the name of one of the disks* do the
transfer* then change the name back to the original. The manual says (once*
in a ver-1' obscure place which I can-'t find again) not to put in two disks
with the same name* but doesn-'t say why.

Another problem I had was in using the T command to transfer several
files from one disk to another. When I keyed in

T AMF:T.=.TEXT*AMFBACK:*

I got the messge DESTROY AMFBACK:? (Y/N)

I dorr't know what would have happened if I had said 'ii'es because I never had
the guts to tr-i- it.

S'-rstem Librar-v:

Several times I have seen the message:

REQUIRED INTRINSIC(S) NOT AVAILABLE

when tr-cing to R(un or E<xecute a program. I soon found out that
SYSTEM.LIBRARY had to be in the system. However* this was not the complete
answer as I found out when I put a disk with it in #4 and tried again. As it
turns out you MUST boot from a disk that has the library on it. If you boot
from a disk without it* then put in a disk with it* the system carr't find it.

10
■»-

appropriate instrument. Even later? I was considering a calendar. Well?
back to the drawing board. Changing 32767 to 32766 produced a nice quick
loop? but changing it back to 32767 caused another infinite wait.

Apparently? the compiler designers blew it. The value of I should have
been checked against 32767 before being incremented? or the increment should
have checked for overflow.

To avoid the problerri? either use 32766 or do the following:
Const Max = 32767
Type LoopControlState = (1ooping?thru)?
Var State:LoopControlState?

I: Integer-
Begin

I := 0? State := looping?
Repeat

C Whatever }
If I < Max then I := I+l else State :== thru?

Until State = thru?
f

I use this instead of anv for loop? because it is more versitile? and
because it works in all cases. There are other reasons involving the use of
variables that do not go outside the specified range.

Filer W<hat Command: I
This command tells you the name of the workfile and whether it has been

saved or not. In a single drive system? it works file. But? if you G(et a
file from a different disk drive than you booted from? do something to it?
then S<ave it back to the other disk? the W(hat command thinks that the
workfile has not been saved? when in fact it has been.

Filer T<ransfer Command:
If -you have two disks in the system at the same time and they have the

same name? DON-'T USE THE T COMMAND! ! ! ! ! ! ! You will wipe out part of at least-
one disk!. The filer sets very confused under these circumstances? and is
apt to wipe out the disk you are transferring from? as well as the one you
are transferring to. Furthermore? you sometimes don't find out until later-
Just which files are messed up. The-y will look Just fine in the directory?
but the contents will be so much garbage.

If you must to this? first change the name of one of the disks? do the
transfer? then change the name back to the original. The manual savs (once?
in a very obscure place which I can't find again) not to put in two disks
with the same name? but doesn't say why.

Another problem I had was in using the T command to transfer several
files from one disk to another. When I keyed in
T AMF:T.=.TEXT?AMFBACK:*
I got the messge DESTROY AMFBACK:? (Y/N)
I don-'t know what would have happened if I had said yes because I never had
the guts to try it.

System Library:
Several times I have seen the message:

REQUIRED INTRINSIC(S) NOT AVAILABLE
when trying to R(un or E(xecute a program. I soon found out that
SYSTEM.LIBRARY had to be in the system. However? this was not the complete
answer as I found out when I put a disk with it in #4 and tried again. As it
tur'ns out you MUST boot from a disk that has the library on it. If you boot
from a disk without it? then put in a disk with it? the system can'"t find it.

11

This is documented in the manual? but onlv in a discussion of makins a

new library file. This is a place a besinner would not look at? and I

skipped it mv first, few times throush the manual. It should be in the
section on E(xecute also.

Assembler!

When doing a forward branch (not a Jump)? the listing does not

properly reflect the contents of the code file. When the branch is

processed? the listing reads? for exaaiPle:

D3EAIF0** BEQ $1

A few lines later? when the lobel is defined? the listing reads

D3EA*00

It should read

D3EB*05

Both the address and the contents are wrong.

Editor!

When in D(elete mode and deleting off the bottom of the screen? the
editor rewrites the screen starting with the next line to be deleted at the

top. It then blanks out the first 3 characters of that line and positions

the cursor to the first blanked out character. These three characters have

not been deleted? but the editor makes it look like they have been. Until I

found out that everything was OK? I used to panic and ESC out of the delete

and start over. This is not necessary? as they have not been deleted.

Conclusion!

This is not all the complaints I have with the Apple Pascal system? but i
all the others involve the poor documentation or things that I would have

designed differently. Most of the documentation problems I expect to be
cleared up when Jef Raskin and his crew write a manual. The current manual

was copied mostly verbatim from the UCSD Pascal manual? and almost all of its

problems stem from that source.

If you have encountered a problem not in this list? please tell me (and

Apple) about it. Hopefully we can work out a way to avoid it and keep others

from wasting much effort finding the same bugs over again.

12

(* ALWAYS WONDERED HOW YOU COULD GET TO THE SYSTEM DATE STORED ON THE DISK
BY THE F)IL.ER D)ATE COMMAND? WELL, HERE IT IS *)

C$C(C) 1979 t'Y John Strait, Copying for non-profit use 0K3
(* Copyright 1979 by John Strait, Three Rivers Computer Corp.
May not be sold for profit. Copying for nonprofit use OK.*)

<* ADAPTED FOR STAND ALONE USE BY PAT MCGEE, 5 SEPT 1980 *)

PROGRAM GETDATE;

VAR

RAWDATE : STRING C 8 3 ?

NICEDATE 5 STRING 1193;

PROCEDURE INITDATES;

CONST

BLOCKNR = 2;

UNITNR = 4;

El. EMENT =11?

BYTES = 22;

TYPE DATE = PACKED RECORD

month: 1 .. 12;

DAY: 1 .. 31;

YEAR: 0 .. 99;

END; C date)

VAR

today: date;

BUFFER: PACKED ARRAY C1 .. ELEMENT3 OF DATE;

MONTH: STRINGC33; C Month name 3

BEGIN (* INITDATES *)

RAWDATE := -YY/MM/DD-; <* ASSIGN ANY STRING, WILL *)

NICEDATE := 'DD MMM YY* ; (*BE REPLACED BY INDIVIDUAL CHARS *)

UNITREAD (UNITNR, BUFFER, BYTES, BLOCKNR);

TODAY := BUFFER CELEMENT3;

WITH TODAY DO BEGIN

RAWDATEC 13 := CHR((YEAR DIV 10) + 48);

RAWDATEC 23 := CHR((YEAR MOD 10) + 48);

RAWDATEC 33 := ••/••;

RAWDATEC 43 := CHR((MONTH DIV 10) + 48);

RAWDATEC 53 := CHR((MONTH MOD 10) + 48);

RAWDATEC 63 := -V ;

RAWDATEC 73 := CHR((DAY DIV 10) + 48);

RAWDATEC 83 CHR((DAY MOD 10) + 48);

END; C WITH TODAY 3

CASE TODAY.MONTH OF

l: MONTH = -JAN'';

2: MONTH = -FEB';

3: MONTH = -MAR'';

4: MONTH = -APR';

5: MONTH = -MAY';

6: MONTH = 'JUN';

7: MONTH = 'JUL';

8! MONTH := 'AUG

9: MONTH := -SEP

10:MONTH := -OCT

11;M0NTH := -NOV

12;MONTH := •DEC

END (# CASE *)?

13

NICEDATEi:

NICEDATFC

NICEDATEC

NICEDATEC

NICEDATEC

NICEDATEC

NICEDATEC

NICEDATEC

NICEDATEC

n

21

31

4]

51

63

73

83

93

RAWDATE C73;

RAWDATE C83;

MONTH C13;

MONTH C23;

MONTH C.33;

7

RAWDATE C.13;

RAWDATE C23;

END (* INITDATES *);

BEGIN (# MAIN »)

WRITELN?

INITDATES;

WRITELN(RAWDATE);

WRITELN(NICEDATE)
END,

<« SCREEN CREATE »>

by Bruce Barber

SCREEN CREATE is the "poor man's graphics
tablet." This program will create high resolution graphic
screens for use as signs or as backgrounds for hires games.
Existing hires graphics can be loaded and modified. The
program is self-documenting. At any time press 'H' for
Help on commands.

As it is listed here, much of the programming IS for
documentation, It is well-worth taking time to key it all
in, for it then becomes instantly available with the 'H'
command,

language,
faster and

It takes a little while to learn the command
so the Help feature is an assset that will bring
more satisfying results.

Although all the features of a full graphics pad are
by no means included, you do find here the basics of
coordinate plotting, area filling, color selection, line
drawing, etc. With care and imagination, it is possible to
generate graphics of surprising sophistication.

One thoughtful feature is the flickering Grid to
indicate distances of 20 points. The esc-G command toggles
this coordinate system on and off, enabling the plotter to
find the way when needed. In addition, your X-Y location
is always read out to you when you enter the Help command.

"Random Lady With Moustache," anyone?

14

SCREEN CREATE

2 LOMEM: 25000

3 D$ = DIM X1%(300),Y1%(300):
DIM H%(10):C = 3:IC = 0: HOME
: GOSUB 62000; HOME
5 X% = 140:Y% = 96: HGR2 : TEXT :
GOSUB 61000: HGR : TEXT

145 POKE - 16368,0:GG = 0: GOSUB
10000

160 IF PEEK (- 16384) > 127 THEN
170

161 IF GG = 1 THEN POKE - 1629
9,0:GG = 2: GOTO 160
162 IF GG = 2 THEN POKE - 1630
0,0:GG = 1: GOTO 160
163 GOTO 160
170 A$ = CHR$ (PEEK (- 16384) -
128): POKE - 16368,0
171 IF ES% = 1 THEN GOTO 300
173 IF A$ = CHR$ (27) THEN ES% =
1: GOTO 160
175 IF A$ = "U" THEN GOTO 5000
180 IF A$ = "D" THEN GOTO 5030
185 IF A$ = "R" THEN GOTO 5090
187 IF A$ = "H" THEN 6000
188 IF A$ = "0" THEN C = 5: HCOLOR=
C: GOTO 160

189 IF A$ = "X" THEN C = 6: HCOLOR-
C: GOTO 160

190 IF A$ = "L" THEN GOTO 5060
191 IF A$ = "W" THEN C = 7: HCOLOR=
C: GOTO 160

192 IF A$ = "B" THEN C = 0: HCOLOR=
C: GOTO 160

193 IF A$ = "G" THEN C = 1: HCOLOR=
C: GOTO 160

194 IF A$ = "V THEN C = 2: HCOLOR=
C: GOTO 160

195 IF A$ = "1" THEN GOTO 5120
196 IF A$ = "2" THEN GOTO 5170
197 IF A$ = "3" THEN GOTO 5210
198 IF A$ = "4" THEN GOTO 5260
199 IF A$ = "P" THEN GOTO 30000

200 IF A$ = CHR$ (8) THEN 5400
202 IF A$ = "M" THEN RE = 0: GOTO
25000
204 IF AS = "C" THEN 26000
206 IF AS = THEN 24000
298 GOTO 160
300 ES% = 0
305 IF AS = "L" THEN GOTO 60000

307 IF AS = "G" AND GG = 0 THEN .
GG = 1: GOTO 160

308 IF AS = "G" AND GG > 0 THEN

GG = 0: POKE - 16300,0: GOTO
160

310 IF AS = "S" THEN GOTO 59000

320 IF AS = "E" THEN TEXT : HOME

: END

330 IF AS = "C THEN HGR : HCOLOR=
C: POKE 49234,0: GOTO 160
340 IF AS = "T" THEN POKE - 16

300,0:GG = 0: HOME : GOSUB 1
0000: TEXT : GOTO 160

350 IF AS = "H" THEN GOTO 4900

999 GOTO 160
2502 IF X > 279 THEN X = 279

4900 POKE - 16304,0: HCOLOR= C:
POKE 49234,0: GOTO 160
5000 Y% = Y% - 1: IF Y% < 0 THEN
Y% = 0

5010 GOSUB 20000: GOTO 160

5030 Y% = Y% + 1: IF Y% > 191 THEN

Y% = 191

5040 GOSUB 20000: GOTO 160

5060 X% = X% - 1: IF X% < 0 THEN

X% = 0

5070 GOSUB 20000: GOTO 160

5090 X% = X% + 1: IF X% > 279 THEN
X% = 279

5100 GOSUB 20000: GOTO 160
5120 X% = X% - 1:Y% = Y% - 1

5130 IF X% < 0 THEN X% = 0

5140 IF Y% < 0 THEN Y% = 0

5150 GOSUB 20000

5160 GOTO 160
5170 X% = X% + 1:Y% = Y% - 1

5180 IF X% > 279 THEN X% = 279

5185 IF Y% < 0 THEN Y% = 0

5190 GOSUB 20000

5200 GOTO 160

5210 X% = X% + 1:Y% = Y% + 1
5220 IF X% > 279 THEN X% = 279
5230 IF Y% > 191 THEN Y% = 191

5240 GOSUB 20000

5250 GOTO 160
5260 X% = X% - 1:Y% = Y% + 1

5270 IF X% < 0 THEN X% = 0

5280 IF Y% > 279 THEN Y% = 191

5290 GOSUB 20000

5300 GOTO 160
5400 INPUT AS

5410 IF VAL (AS) =■ 0 THEN GOTO
160
5420 X = VAL (AS)
5422 IF X = - 999 THEN 160
5425 HCOLOR= 0
5430 FOR Y=ICT0IC-X+1 STEP
- 1

16

5433 IF X1%(IC) = 999 THEN GOTO
5475

5438 IF X1%(IC) > 299 THEN X1%(I

C) = X1%(IC) - 300:yi%(IC) =
yi%(IC) - 300: HPLOT X1%(IC -
i),yi%(ic - 1) TO xi%(ic),yi
%(IC): GOTO 5455
5440 X% = Xl%(IC):y% = yi%(IC)
5450 HPLOT X%,y%
5455 X1%(IC) = 999:yi%(IC) = 999
5460 IC = IC - 1: IF IC = 0 THEN

IC = 300

5470 NEXT

5475 HCOLOR= C
5480 GOTO 160

6000 HOME

6010 HTAB 11: PRINT "SCREEN COMM

ANDS"

6020 HTAB 11: PRINT "===========

6030 HTAB 5: PRINT "SCREEN PLOT
COMMANDS:"
6040 HTAB 5: PRINT "1) U = PLOT
UP"

6050 HTAB 5: PRINT "2) R = PLOT
RIGHT"

6060 HTAB 5: PRINT "3) D = PLOT
DOVJN"

6070 HTAB 5: PRINT "4) L = PLOT

LEFT"

6080 HTAB 5: PRINT "5) 1 = PLOT
ANGLE UP/LEFT"
6090 HTAB 5: PRINT "6) 2 = PLOT
ANGLE UP/RIGHT"

6100 HTAB 5: PRINT "7) 3 = PLOT
ANGLE DOWN/RIGHT"

6110 HTAB 5: PRINT "8) 4 = PLOT
ANGLE DOWN/LEFT"
6115 HTAB 5: PRINT "COLOR COMtlAN
DS:"
6120 HTAB 5: PRINT "1) W = VJHITE
2) G = GREEN"

6140 HTAB 5: PRINT "3) V = VIOLE
T 4) B = BLACK"
6160 HTAB 5: PRINT "MISC COMMAND
S: "

6170 HTAB 5: PRINT "1) H = HELP(
LIST COMMANDS)"

6180 HTAB 5: PRINT "2) <- = (LEF
T ARROW) DELETE PREV-"

6190 HTAB 14: PRINT "lOUS PLOTS.
REQUIRES A ": HTAB 14: PRINT

"NUMBER BETWEEN 1 -300"

6200 HTAB 14: PRINT "FOLLOWED By

A RETURN."

6210 HTAB 14: PRINT "(I.E. <- 17

<RET>)": HTAB 14: PRINT "D

ELETES LAST 17 PLOTS."

6212 HTAB 5: PRINT "3) P = POSIT

lONCl.E.P 2,4<RET>)"
6215 TEXT

6220 VTAB 24: INPUT "<RETURN>";A
NS$

6230 HOME

6240 PRINT "LINE AND BLOCK COMMA

NDS:"

6250 HTAB 5: PRINT "1) M = MAKE
A LINE. MUST BE"

6260 HTAB 8: PRINT "FOLLOWED By

THE END OF LINE X,y"
6270 HTAB 8: PRINT "COORDINATES.
I.E. M187,122<RET>"

6280 HTAB 5:. PRINT "2) C = COLOR
AN AREA. MUST BE FOL-"

6290 HTAB 8: PRINT "LOWED By A N
O. OF LINE REPEATS"

6300 HTAB 8: PRINT "AND A RETURN
. THEN SPECIFy THE"

6310 HTAB 8: PRINT "ENDING X AND
y C(X)RDINATES AND"

6320 HTAB 8: PRINT "RETURN. I.E.
C12<RET>140,50<RET>"

6330 HTAB 8: PRINT "IF THE LAST
POINT WAS AT"

6340 HTAB 8: PRINT "LOCATION X=8
0 AND y=50, THE"
6350 HTAB 8: PRINT "ABOVE EXAMPL

E WOULD PLOT A"

6360 HTAB 8: PRINT "RECTANGLE FR
OM X 80 TO 140"

6370 HTAB 8: PRINT "AND y50 TO 6
2."

6371 HTAB 5: PRINT "3) # = GREAT
E A RECTANGLE. USE"
6372 HTAB 8: PRINT "POSITION COM
MAND TO SPECIFy"

6373 HTAB 8: PRINT "UPPER LEFT A
ND LOWER RIGHT"

6374 HTAB 8: PRINT "COORDINATES.
THEN '#• WILL DO"

6375 HTAB 8: PRINT "THE REST. I.
E. P10,20<RET>"
6376 HTAB 8: PRINT "P30,40<RET>#
WILL DO A SQUARE."

6377 VTAB 24: INPUT "<RETURN>";A
NS$: HOME

17

6380 PRINT : PRINT "SHORTCUTS:(M
AND C ONLY):"

6390 HTAB 5j PRINT "WHEN USING E
ITHER OF THESE"

6400 HTAB 5: PRINT "COMMANDS, TO
DUPLICATE THE CURRENT"

6410 HTAB 5: PRINT "X OR Y COORD
INATE, ENTER A -1"
6420 HTAB 5: PRINT "INSTEAD OF T
HE ACTUAL LOCATION,"

6430 HTAB 5: PRINT "I.E. M140,-l
<RET> WOULD DRAW A"

6440 HTAB 5: PRINT "HORIZONTAL L
INE. M-1,160 WOULD"
6450 HTAB 5: PRINT "DRAW A VERTI
CAL LINE."
6455 HTAB 5

6460 PRINT : PRINT "WHEN USING T
HESE COMMANDS YOU MAY"

6470 HTAB 5: PRINT "LOSE YOUR PL

ACE AND NOT BE SURE"

6480 HTAB 5: PRINT "WHAT RESPONS
E THE COMPUTER IS "

6490 HTAB 5: PRINT "WAITING FOR.
IF YOU ENTER <RET>"

6500 HTAB 5: PRINT "-999,-999<RE
T> THE CURRENT COMMAND"

6510 HTAB 5: PRINT "WILL BE CANC
ELLED."

6900 VTAB 24: INPUT "<RETURN>"jA
NS$

6990 GOTO 4900

10000 REM

10010 HOME : HTAB 11

10020 PRINT "LIST OF COMMANDS"

10030 HTAB 11
10040 PRINT "=========:======="

10045 HTAB 11

10050 VTAB 4: PRINT "MASTER COMM

ANDS"

10055 PRINT

10057 HTAB 5

10060 PRINT "DESC L-LOAD OLD SH

APE"

10070 HTAB 5

10080 PRINT "2)ESC S-SAVE CURREN

T SHAPE"

10082 HTAB 5

10084 PRINT "3)ESC C-CLEAR CURRE

NT SCREEN"
10090 HTAB 5

10094 PRINT "4)ESC E-END PROGRAM

10097 HTAB 5
10100 PRINT "5)ESC T-TEXT MODE"
10110 HTAB 5
10120 PRINT "6)ESC H-HIRES MODE"

10121 HTAB 5: PRINT "7)ESC G-HIR
ES GUIDE GRID (ON/OFF)"
10122 HTAB 11: PRINT "(GRID IS E
ACH 20 PLOT POS'NS)"
10123 VTAB 23: PRINT "CURRENT PL
OT POSITION X=";X%;" Y=":
Y%

10130 RETURN
20000 HPLOT X%,Y%
20003 IC = IC + 1: IF IC > 300 THEN
IC = 1

20005 X1%(IC) = X%:Y1%(IC) = Y%
20010 RETURN
24000 IF X1%(IC) = - 999 THEN GOTO
160

24010 IF IC = 1 AND Xl%(300) = -
999 THEN GOTO 160
24020 IF IC = 1 THEN 24031
24023 IF Xl%(IC - 1) = - 999 THEN
160

24031 H%(1) = X1%(IC - 1):H%(2) =
Y1%(IC - 1):H%(3) = X1%(IC):
H%(4) = Y1%(IC - 1):H%(5) =
X1%(IC):H%(6) = Y1%(IC)
24033 H%(7) = X1%(IC - 1):H%(8) =
Y1%(IC):H%(9) = X1%(IC - 1):
H%(10) = Y1%(IC - 1)
24035 FOR Z = 2 TO 8 STEP 2
24036 X% = H%(Z - 1):Y% = H%(Z): GOSUB
20000

24037 RE = 1:X = H%(Z + 1):Y = H%
(Z + 2): GOSUB 25030
24038 NEXT
24090 GOTO 160
25000 REM PLOT A LINE
25010 INPUT X,Y
25011 IF X = - 999 OR Y = - 99
9 THEN 160
25030 IF X > 279 THEN X = 279
25040 IF Y > 191 THEN Y = 191
25045 X% = X1%(IC):Y% = Y1%(IC): IF
X% > 299 THEN X% = X% - 300
25046 IF Y% > 299 THEN Y% = Y% -
300

25047 GOSUB 20003
25048 IF X > - 1 THEN X% = X
25049 IF Y > - 1 THEN Y% = Y
25060 HPLOT TO X%,Y%
25070 X% = X% + 300:Y% = Y% + 300

18

25080 GOSUB 20003
25085 X% = X% - 300:y% = ¥% - 300

25088 IF RE > 0 THEN RETURN

25090 GOTO 160

26000 REM COLOR AN AREA

26010 INPUT RE

26011 IF RE = - 999 THEN 160
26012 0X% = X%:OY% = Y%
26020 GOSUB 25000
26030 RE = RE - 1: IF RE = <1 THEN
GOTO 160

26040 0Y% = 0Y% + 1:Y% = 0Y%: IF
Y% > 191 THEN Y% = 191
26044 X% = 0X%
26049 Y = 0Y%
26050 GOSUB 20000: GOSUB 25030: GOTO
26030

30000 REM

30010 INPUT X,Y
30011 IF X = - 999 OR Y = - 99
9 THEN 160
30020 IF X > 279 THEN X = 279
30022 IF X < 0 THEN X = 0
30030 IF Y < 0 THEN Y = 0
30040 IF Y > 191 THEN Y = 191
30050 X% = X:Y% = Y
30060 GOSUB 20000: GOTO 160
59000 REM SAVE FILE
59010 TEXT : HOME
59011 REM

59020 VTAB 5: HTAB 7
59030 PRINT "ENTER SAVE FILE NAM
E"

59040 HTAB 7: INPUT ''==>";ANS$
59050 PRINT D$; "BSAVE ";ANS$;'',A
$2000,L$2000''
59060 A$ = "T": GOTO 340
60000 REM LOAD
60010 TEXT : HOME
60020 VTAB 5: HTAB 7
60030 PRINT "ENTER INPUT FILE NA
ME"

60040 HTAB 7: INPUT "==>";ANSS
60050 PRINT D$;"BLOAD ";ANS$?",A
$2000"

60060 A$ = "T": GOTO 340
61000 COLOR= 7: HPLOT 19,0 TO 19
,189: HPLOT 39,0 TO 39,189: HPLOT
59,0 TO 59,189: HPLOT 79,0 TO
79,189

61010 HPLOT 99,0 TO 99,189: HPLOT
119,0 TO 119,189: HPLOT 139,
0 TO 139,189: HPLOT 159,0 TO
159,189: HPLOT 179,0 TO 179,
189: HPLOT 199,0 TO 199,189
61020 HPLOT 219,0 TO 219,189: HPLOT
239,0 TO 239,189: HPLOT 259,
0 TO 259,189: HPLOT 0,19 TO
279,19: HPLOT 0,39 TO 279,39

.: HPLOT 0,59 TO 279,59
61030 HPLOT 0,79 TO 279,79: HPLOT
0,99 TO 279,99: HPLOT 0,119 TO
279,119: HPLOT 0,139 TO 279,
139: HPLOT 0,159 TO 279,159:
HPLOT 0,179 TO 279,179

61040 RETURN
62000 VTAB 4: HTAB 5: INVERSE : PRINT
tl

": HTAB 5: PRINT " ";: HTAB
34: PRINT " "

62010 HTAB 5: PRINT " ";: HTAB 3
4: PRINT " "

62020 HTAB 5: PRINT " ";: HTAB 3
4: PRINT " ": HTAB 5: PRINT
" ";: HTAB 34: PRINT " ": HTAB
5: PRINT " ";: HTAB 34: PRINT
" ": HTAB 5: PRINT "

If

62040 NORMAL : VTAB 6: HTAB 14: PRINT
"HIRES SCREEN";: HTAB 13: VTAB
7: PRINT "CREATE PROGRAM";: VTAB
8

62050 HTAB 10: PRINT "(C) BY BRU
CE BARBER";: VTAB 12: HTAB 7
: PRINT "NONCOMMERCIAL DISTR
IBUTION": HTAB 13: PRINT "IS
ACCEPTABLE"

62060 VTAB 15: PRINT "THIS PROGR
AM WILL CREATE HIGH RESOLU-"
: PRINT "TION GRAPHIC SCREEN
S FOR USE AS SIGNS": PRINT "
OR BACKGROUNDS FOR HIRES GAM
ES. IN"

62070 PRINT "AFFECT THIS IS THE
POOR MANS GRAPHICS": PRINT "
PAD, THE PROGRAM IS SELF DO
CUMENTING.": PRINT "AT ANY T
IME PRESS 'H' FOR HELP ON": PRINT
"COMMANDS. PROGRAM MUST BE R
ELOADED"

62071 PRINT "FOR EACH EXECUTION
SINCE SOME CODE IS": PRINT "
DESTROYED BY RUNNING IT."
62080 FOR X = 1 TO 300:X1%(X) =
999:Y1%(X) = 999: NEXT : VTAB
24: INPUT "<RETURN>";ANS$
62090 RETURN

19

«< DOS 3.2 DISASSEMBLY »>

We continue in this issue our fifth installment of Lee
Meador's excellent series on the Disk Operating Systemr as
originally published in the "Fort Worth Apple Users Group
Newsletter." Lee is thinking of preparing a technical
booklet on Apple DOS, with these studies as the core.
Comments, errors noted and suggestions can be directed to
him at 1401 Hillcrest Drive, Arlington, TX 76010.

Pi

Newsletter for the Fort Worth area Apple Users Group

Vol 1, Number 7 15 March 1980

Disassembly of DOS 3.2
by l ee Mcador

This mcnlhs insiallmeni of the DOS disassembly
has the commented disassembly of the six routines
that RWTS calls.

I*RENIBL — Co?»verls a page (256 bytes) of real
bytes into 5-bit nibbles. Tlic nibble*, fake up 410
bytes of memory.

WRITE — Take the 410 nibbles and wriie them to

the disk at it« current position. Tliey form one sec
tor. The 5-bit nibbles are converted to R bit "disk"

bytes immediately before being written. (A more
complete esplninalion of these is given below.) Each
nibble is Exchisive-Ored with the previous nibble
before being converted and a checksum bjte is put at
the end. The first three bytes are 5D5, $AA and $AD
to signal the start of the data in the sector. The last

three bytes are $DA $AA and $EB to .signal (be end
of.sector.

READ — Read the nibbles off the disk. First, find
SD5, $AA and SAD at the start of the data portion
of the next disk sector. Tlien read the 410 "disk"

bytes and convert to 5-bit nibbles as they are put into
the nibble buffer. Check (he checksum and the SDA

and $A A at the end to make sure we read correctly.
READADR — Read wliat is on the disk until a

sector header is found. It is marked by $D5, $AA
and $B5. Tl'.en read the Vnhimn mimbcr, track
number and sector number from the sector header.

Then check (he checksum and find the $DE and

SAA on the end to be sure we got it right. The vol.
trk and sect are passed back to RWTS which uses
Ihem to find the sector it necd.s to read or write.

POSTNIRL — Convert a buffer of 5-bit nibbles

to real bytes and lore into a page of memory.
SEEKABS — Move the re.:.u head to the specified

track. This routine assumes that the current track in

formation is correct. As we move it delays (he cor
rect amounts to make sure the head got to where wt

want it.

The data in the 256 bytes of memory that are be
ing written to the di^k goes through several transfor

mations before getting to the disk s»»rface. First
PRIiNIBL converts (he 8 bit memory bytes to 5-bit
nibbles and stores them in a buffer at SBBOO to

SHC99, inclusive. (5 bits is not usually called a nibble
bijt we will define il fha! way for our purposes.) So,

256 bytes arc now .stored as 410 nibbles. Next

FE exclusive-or.s each nibble wirh the previous

tme. Tlien it converts the nibbles to 8 "disk"bi(

bytes using the table at SBC9A. These bytes have the
following two properties. 1) Bit 7 Is always a one and

2) there are no two zero bits together in the byte. So, -
SAA is okay but $CC isn't, I call (hem "disk" bytes .
to distinguish (hem from (he "real" bjies that arc V
from the 256 byte block of memory. Finally the disk .
bytes arc written onto the disk surface.

When they are read off the disk they arc im
mediately converted back to nibbles a.id cxclusive-
orcd with (he previous nibble to get the original nib
ble. READ is the routine that does this. The nibbles

end up in the nibble buffer mentioned above. RWTS
calls POSTNIBL to convert the nibbles to 256 real

bytes and puts them where (hey need to go.
You .should look at theSept-OcI issiie for more in- •

formation on the shuffling (he data goes through as..
it is converted from memory to nibble buffer and

back. The order is changed quite a bit. This install
ment continues (he same naming conventions used in
that article. •

Next month we will address the disk hardware (all

puns intended) and talk about the mini-processor on

the disk interface card. Thb little gem is program-
ineJ to read the data comijjg off the disk and convert

it to parallel data for the Apple 11 data bus. Il also
converts it going the other way and can inform the
Ap]>le software whether the diskette is write pio-

(eclcd or not. We will talk a little about (he dif-

fciencc between BASIC and Pascal diskettes and the

diffetences between the two P6 ROMs..

20

FWAUG Newaletler March 1980

nflHMt.

2F hold VoL Trki Sect and Chkaom in ROADR

Mm 8A28 current track for SEEKAflS
OA?a 8A39
O-'f/a 0A40
O'l/a 8A50

n//»^ flo?i holds slot tt of disk <$sO format)Hac5 Used to take up one more cycle than *27 the pape 0 value

flfloo PRENIBL - A SECTOR OF REAL BYTES TO RIGHT JUSTIFIED
i BIT NIBBLtS («19A - 5 BIT GROUPS. OR AlO DECIHAL).

8800- A2 32
8302- AO 00

B80A B858
bbOA- B1 3E
fiftOd- 85 26
JJbOa- 4A
r!U09— AA
OUGA- AA
9808- 9D 00 BB
B80t- CO

unoF- B1 3E
1(811- 85 27
8813- AA
ilUlO- AA
1.815- AA

90 33 88
ii;:)j9- Ctl

8810- 81 3E
Rfi'i:- 85 2A
!>/ ;t'- AA
1)811- AA

AA
1,821- 90 66 BB

CO.

8825- B1 3E
9827- AA
8828- 26 2A
iin2A- AA
!!H2U- 26 27
(;H2()- AA
!in2e- 26 26
!iH30- 90 99 BB
9833- CO

8834- B1 3E
tJiiS'f.- AA

LDX «i32
LDY SI400

LDA
STA
LSR
LSR
LSR
STA
IHV

LDA
STA
LSR
LSR
LSR
STA
IHY

LDA
SfA
LSR

LSR
LSR
STA
IHY

LDA
LSR
ROL
LSR
ROL
LSR
RCL
SIA
IHY

LDA
LSR

(*3E>,Y
*26

$8B00,X

<«3E).Y
*27

«.BB33. X

(1.3E).Y
<.:'A

$8866.X

($3E).Y

«2A .

$27

«26
$8099.X

<$3E),Y

$33 bytes per section
offset in real bytes (input)

form part 1» section 0
(part 2 is in $26)

part 1. sec 0 is $flB<M).BB32
next real byte

form part 1» section 1
(part 2 is in $27)

part 1, SBC 1 is $8833.BB65
next real byte

form part 1. section 2
(part 2 is in $2A)

part l. sec 2 is $8866.8898
next real byte

form part 1. section 3
(part 2 is spread out)
bit 0 yoes in $2A

bit t goes in $27

bit 2 goes in $26
part 1, sec 3 is in $8899.BBCB
next real byte

form part 1. section A
(part 2 is spread out)

21

March 1980 FWAUG

BB37- 26 2A ROL «2A
B839- AA LSR
B83A- 26 27 ROL $27
B83C- ^A LSR
B83D- 9D CC BB STA $BBCC# X
B8^0- A5 26 LDA $26
08^2- 2A ROL
B8^3- 29 IF AND ttflF
B8A5- 90 00 BC STA $DCOO,X
B8A8- A5 27 LDA $27
B8AA- 29 IF AND «I$1F
B8AC- 90 33 BC STA $BC33.X
BB^F- A5 2A LOA $2A
B831- 29 IF AMD «I$1F
B853- 90 66 BC STA $nC66,X
B956- C8 INY
B857- CA DEX
B858- 10 AA 8PL $B80A

B85A- B1 3E LDA ($3E)#Y
B85C- AA TAX
B85D- 29 07 AND «$07
B85F- 80 99 BC STA $BC99
B862- 8A TXA
0963- AA LSR
606^- AA LSR
B865- AA LSR
B866- 80 FF BB SIA $BBFF
B869- 60 RTS

B86A WRITE - WRITE ALL THE NIBBLES
SURFACE

bit 0 goes in $2A

bit 1 goes in «27
bit 2 IS in the carry
part 1, sec A is in sBBCC.BBFE
add bit 2 to t26

keep only 5 bits
part 2, sec 0 is in $BC00.BC32

keep 5 bits here< too
part 2» sec 1 is in $BC33.BC65

keep 3 bits again
part 2, sec 2 is in $BC66.BC98
next real byte
back off 1 in each section
If not to end of section - loop

get "last byte"
save in X
keep 3 bits in part 2» sec 3
(offset is 1)
5 high bits are in "last byte"

and we are done

. CONVERT EACH TO 8 BIT VALUE FIRST.

B86A- 38 SEC
B86D- DO 80 CO LDA $C08D,X
B86E- BO 8E CO LOA $C08E# X
B871- 30 7C BHI $B8EF
B873- 86 27 SIX $27
B875- 8E 78 06 STX $0678

B878- AD 00 BC LDA $BCOO
887B- 85 26 STA $26
B87D- A9 FF LOA «$FF
B87F- 90 8F CO STA $C08F,X

B882- ID 8C CO ORA $C08C,X

B885- A8 PHA
D886- 68 PLA
0887- EA NOP
B888- AO OA LOY
B88A B890

HfOA

set in case of error return
set 06 high
and 07 low to read write protect
... status (neg. means protected
X is the slot — save in t27
and in Active Peripheral place
... used to take up cycles ($8BC5
This is the first nibble of part
... save it for EOR-ing
Write an $FF on the disk (sync)
set 07 high (06 is already)
... to load ACC into Shift Regist
set 06 low to start writing on
... the disk surface. This reads
... iFF from the shift register#
... so the ACC is unchanged.
Waste some time to fall into loop
... at the right time
... so Writes are 36 cycles apart
Do this 10 times (that gives 11 %

22

FWAUG Newsletter

B38A- 05 26 ORA $26
easc- 20 F4 BB JSR $BBF4

888F- 88 DEY
B890- 00 F8 BNE $R8BA
0892- A9 05 LDA H$D5

11094- 20 F3 88 JSR $B0F3
0997- A9 AA LOA tt$AA
0099- 20 F3 BB JSR $BBF3
D89C- A9 AD LOA H$AO
B89E- 20 F3 B8 JSR $B8F3

B8A1- WRITE PART 2 BYTES $99 TO
BBAl- m m. WITH THE NEXT HIGHER B

BOAl- 98 TYA
B8A2- AO 9A I.OY H$9A
B8A4- DO 03 BNE $BBA9
0RA6 B8B9
B0A6- 89 00 BC LOA $BCOO,Y
0809 B8A4
nBA9- 59 FF BO EOR $BBFF.Y
B8AC- AA TAX
B8A0- 00 9A BC LOA $BC9A,X

88B0- A6 27 LOX $27
[)8C2- 90 80 CO STA $C08D,X
B8B5- B O 8C CO LOA $C08C.X

bonn- 00 OEY
BQB9- DO ED BNE $B6A6

U8BB- WRITE PART 1, BYTES 0 TO $FF

08R(J- A5 26 LOA $26
8800- EA NOP
OaOE B802
B8BE- 59 00 BB EOR $BB00.Y
B8C1- AA TAX
B8C2- BO 9A BC LDA $BC9A,X
B8C5- AE 78 06 LOX $0678

oac8- 90 80 CO STA $C080,X
B0C8- 80 8C CO LDA $C08C,X
BOCE- 89 00 BB LDA $BB00.Y
8001- C8 I NY
11002- 00 EA BNE $B8BE
8004- AA TAX
8805- no 9A BC LDA $BC9A,X
8808- A6 27 LOX $27
D80A- 20 F6 BB JSR $BBF6

March 1980

Waste some time (no effect)
Go write the byte in ACC ($FF)
... Writes are still 36 cycles apart
One less to do
... and loop if any left
Write a $D5 to siynal start of data
... after 36 cycles
Same as $B8F4 (waits 2 cycles more)
Write a $AA as second byte

Write an $AD as third byte
... $05 $AA $AD are data header
... written 32 cycles apart

Set A(X to zero (1st EOR)
We will write $9A nibbles (part 2)
Always taken - skip into loop

ACC gets previous nibble

FOR with current nibble
Use this as offset into table
... of disk bytes. The 5-bit nibble
... maps into an 8-bit byte that
... is suitable for writing.
X gets the slot
Write the byte!
... 32 cycles later (1st byte 33)
... (Disk IF writes 1 bit/A cycles)
One less byte to do
Loop if any left

Get first nibble^ part 2
Wait 2 more cycles

FOR with current nibble
Translate to disk surface byte
... using X as offset
Get the slot (use ABS addr to
... make it take 1 cycle longer)
Write the byte after 32 cycles

Get current (soon previous) nibble
Oo next byte
Loop if any left
Change "last" nibble for writing
... using X as offset
Get the slot
Write byte as checksum (Note:

23

March 1980 FWAUG Nowsleller

BBDD-
B8DF-

B8E^-
B8E7-

A9
20

20
A9

B8EC- BD
B8EF B871

B8F2- 60

B8F3 B89A -
B8F3 B899
B8F3 B89E

B8F3 B8EA
B8F3 B8E9

B8FA B88C ■

B8F5- 68

the EOR of all the other
... bytes gives this.)

II *r„- ■ ... 32 cycles laterUrite $DE in data trailer
cycles later

LDA H$AA Urite $AA

and finally write $EB
JSR fB8F3 tDE $AA fEB is trai

DE LDA tttOE
F3 08 J5R $B8F3

B8E2- A9 AA
F3 B8 JSR $B8F3

LDA H$EB
B8E9- 20 F3 B8

8EC0 LDA .COBE.X Srt

B8EF- BD 8C CO
RTS

LDA $C08CiX and 06 low (thats
end of Write routine

ROUTINE TO WAIT A UHILE AND URITE THE ACC TO DISK

B8F3 B8DF

B8F3- 18 CLC

entry HERE DOESN'T UAIT AS LONG
BSF-q- /|8 PHA

PLA wait A cycles

wait 2 cycles

wait 3 cycles

B8F6- 9D
B8F9- ID
B8FC- 60

B8FD- READ

on DOESN'T UAIT AT ALL
or rn oda IrSoR'J to the diskCO ORA $C08C»X ... 07,06 high then 06 low

return - delays 6 cycles too

■ K JrI
B8FD- AO 20
B8FF B909
B8FF- 88
B900- FO 61
B902 B905
B902- BD 8C CO
B905- 10 FB

B907 B913
B907 B91E
B907- A9 05
B909- DO FA
B90B- EA
B90C B90F
B90C- BD 8C CO
B90F- 10 FB
B911- C9 AA

LDY H*20 Ue must find iD5 within *20 bytes
DEY
BEO

LDA
BPL

tB963

fC08C, X.
♦B902

EOR fl$D5
BNE iBBFF
NOP

LDA $C08C,X
BPL 1:B90C
CMP «$AA

One less chance to find it
If no more chances, error return

Keep 06 low, read shift register.
If positive, full byte not ready
... since bit 7 is always a one.
... Reads must be more than 12 an
... less than 32 cycles apart.

See if we got a $D5
If not, try again
Uait 12 cycles before next try
Read next byte
... and try until it is ready
Is it an fAA ^

24

FWAUG Newsletter Marcli 1980

H9I3- DO F2
0915- AO 9A
0917 B91A
B917- BD 8C CO
B91A- 10 FB
B91C- C9 AD
B91E- DO E7

BNE
LDY

*B907
«49A

l-DA $C08C. X
BPL tB917
CUP II4AD
BHE iB907

^ f^OUND «D5 $AA $AD. THATSB920- ... 2 OFF DISK. NIBBLES $99

B920- A9 00
0922 B932
1)922- 08
fc'923- 84 26
0925 B920

IDA H«00

G925-
11920-
B92A-
B92I)-
B92F-

G932-

BC 8C CO
10 FB
59 00 BA
A4 26
99 00 BC
DO EE

DEY
STY

LDY
BPL
EOR
LDY
STA
ONE

♦26

If not» try for a iDS again
Ue mill read *98 bytes later

Read next byte
.. loop until ready
Is it an fAD
If not, try for a iDS again

THE DATA HEADER. NOW READ PART
TO $0 IN THAT ORDER. (SEE $8915)

Ue are ready-ing checksum

ready for current byte
Save offset (me use Y in betmeen)

♦C08C, X Read the byte
♦B925 ... and loop until ready
in^0-$A8.Y Convert to left justified nibble

Get offset into part 2
♦OCOO»Y Put nibble there
♦B922 Loop if YttO

B934- NOU READ PART 1. BYTES 0 TO tFF IN THAT ORDER
B934 B944
B934- 84 26
13936 B939
B936-
G939-
BV3B-

BC 8C

STY $26 Set offset to 0

B93E-
f,940-
n943-
[1944-

CO
10 FB
59 00 BA

26A4
99 00
C8
DO EE

BB

LDY
BPL
EOR
LDY
STA
I NY
BNE

♦C08C,X Read the byte
♦11936 ... and loop until its ready
♦BAAH-fAB,Y Convert to nibble
♦26 Get offset back into Y
♦BBOO,Y ... and store byte there
♦B934 If any left, loop to read

0946- READ DIECKSUH BYTE TO SEE IF EVERYTHING SO FAR IS CORRECT
B946
B946-
11949-
B94B-
!194!:-
0950
L-950-
B953-
BV5'5-
B957-
i,959-
[!95A
£;95A-
1)951)-
0951-"-
13961-

B949
• BC

10
■ D9
• DO
8953

BD
10

• C9
DO
EA

B95D
BD
10
C9
FO

8C CO
FB
00 BA
13

8C CO
FB
DE
OA

BC CO
FB
AA
5C

LDY
BPL
CMP
BNE

LDA
BOL
Clip
BME
i'lGP

LDA
BPL
CMP
DEO

♦COOC,X Read the byte
readij

its the same as the last byte
jL96J If different, error return

♦COOC,X
♦B950
((IDE
♦1)963

♦COOC.X
♦B95A
(IIAA
♦li9[)F

Read next byte
... yes, me sti11 loop
If it is iOE t)ien me are at the
... end. If not, error return
Uait 2 cycles

Read next byte
... loop til its ready
If it is iAA (trailer is iDE AA EB)
... then do successful return

25

March 1980 FWAUG Newsletter

Sli K " SE' "EflNS ERROR.
B963 B957
B963 B96E
B9&3 B9AA
B963 B9B3
B9A3 B9BD

896?- 60
R9«- RE«D»R - KJf track

R'iip^?lMSR^?T^T KorJ""''
B965- AO F8

B967
B969
B969-
B96A-
B96C-
B96E-
B970
B970
B970-
B973-
B975
B975
B975-
B977-
B979-
B97A
B97A-
B97D-
B97F-
B981-
B983-
B985
B985-
B988-
B98A-
B98C-

- 8-q
8977
- C8
- DO
- E6
- FO
B96A
B973
• BD
■ 10
B981
B98C
• C9

■ DO
• EA
e97D

BD
10
C9
DO
AO

B988
BD
10
C9
DO

26

04
26
F3

8C CO
FB

D5
FO

8C CO
FB
AA
F2
03

8C CO
FB '
B5
E7

LDY «$F8

STY $26

INY
BNE $8970
INC $26
BEQ $8963

IDA $C08C,X
BPL $B970

CMP «$D5
BNE $B969
NOP

LDA $C08C.X
BPL $B97A
CMP tl$AA
BNE $8975
LDY H$03

LDA $COBC, X
BPL $8985
"CMP «$B5
BNE $8975

B98E- UE FOUND ADDRESS HEADER ($D5

B98E- A9 00
B990 B9A7
B990- 85 27
B992 B995
B992- BD 8C CO
B995- 10 FB
B997- 2A

IDA

STA

IDA
BPL
ROL

M«00

$27

$C08C,X
1.B992

Only $708.bytes will be read
... from $F8F8 to $10000
before error returning

Count one try (low byte)
(this is for 16 bit increment)
Count one try (high byte)
If to zero> error return

Read a byte
... loop til it is formed

Is it a $05 (Address header)
No? Count this as a miss
Wait 2 extra cycles

Read next byte
... when its ready
Is it $AA
If not try for $D5
Ue will read 0-3 later

Read thitd byte
... at its leisure
Is it a $B5
If not, see if its a $D5

AA B5) NOT READ ADDRESS

We use this to form checksum

Keep the checksum in $27

Read a byte (This is done A times
... and wait til its done
But this is just half of it

26

FWAUG Newsletter Marcli 1980

E998- 85 26 STA $26
E99A B99D
B99A- BD 8C CO LDA $0080/ X
B99D- 10 FD BPL $B99A
E99F- 25 26 AND $26
D9A1- 99 20 00 STA $0020/Y
E9A4- A5 27 EOR $27
D9A6- 88 DEY
B9A7- 10 E7 BPL $B990
B9A9- A8 TAY
li9AA- DO B7 BWE $B963
G9AC B9AF
B9AC- BD 8C CO LDA $0080/X
B9AF- 10 FB BPL $B9AC
E9in- 09 DE CUP !I$[)E
tJ9l)3- 00 AE BNE $0963
L'9D5- EA MOP
E9U6 8989
B9U6- BD 80 CO LDA $0080/X
D9D9- 10 FB BPL $3986
E9QB- C9 AA CUP HI.AA
E90D- DO A^ BNE $3963
E90f B961
E9UF- 18 CLC
E9C0- 60 RTS

B9C1- POSTNIBL - CONVERT THESE LEI
TO RE

Save this half

Read another byte
... keep tryinipl
Put the halves together
Store it away for the caller
EOR to form checksum
One less to do
do 3-0 then no more loop
See if checksum EOR other stuff
... is zero» If not» error return

Read next byte
... and so forth
See if it is $DE
If not/ error return
Uait 2 extra cycles

Read another byte
... you guessed it!
See If it is $AA
If not/ erro return

Carry is clear for this/ a
... normal return

AL BYTES ($100). $3E.3F POINTS TO BUFFER TO PUT THEO.

X is number of bytes / section
... Start with last nibble in section
Y is offset into out buffer

Do part 2/ section 0
ignore tf*e three low
... order bits

Keep rightmost bit in $27
... and dump it too
Keep new rightmost bit in $26
... and get rid of it
Add part 2 to part 1/ section 0
And put "real" byte into buffer
Get ready for next byte
N9W do part2/ section 1
First/ ignore low order bits
... two
... three
Put new low order in with bit
... already in $27
And the next bit in with the one
... already in $26
Add part 2 to part 1/ section 1
Put new "real" byte into buffer

8901- A2 32 LDX H$32

B903- AO 00 LDY H$00
B9C5 BAIO
0905- BD 00 BO LDA SBOOO.X
B908- ^A LSR
G909- AA LSR
B9CA- AA LSR
8900- 05 27 STA $27
09CD- AA LSR
G9CE- 85 26 STA $26
0900- AA LSR
B9r)l- ID 00 BB OR A $BBOO.X
G9D-1- 91 3E STA ($3E).Y
09D6- CO I NY
E907- BO 33 BO LDA $8033/X
09DA- AA LSR
E9DU- AA LSR
E9DC- AA LSR
B9DD- AA LSR
B9DE- 26 27 ROL $27
C9E0- AA LSR
B9Et- 26 26 ROL $26
Q9E3- ID 33 BB ORA $8833,X
E9E6- 91 3E STA ($3E)/Y

27

March 1980

B9Ea- C8 INY
B9E9- BO 66 BC IDA
B9EC- 4A 1 LSR
B9ED- 4A LSR
B9EE- 4A LSR
B9EF- 4A LSR
B9F0- 26 27 ROL
B9F2- 4A LSR
B9F3- 26 26 ROL
B9F5- ID 66 BB OR A
B9F8- 91 3E STA
B9FA- C8 INY
B9FB- A5 26 LDA
B9FD- 29 07 AND
B9FF- ID 99 BB QRA
BA02- 91 3E STA
BA04- C8 INY
BA05- A5 27 LDA
BA07- 29 07 AND
8A09- ID CC BB ORA
BAOC- 91 3E STA
BAOE- C8 INY
BAOF- CA DEX
BAIO- 10 B3 DPL
BA12- AD 99 BC LDA
8A15- 4A LSR
BA16- 4A LSR
BA17- 4A LSR
BA18- OD FF BB ORA
BAie- 91 3E STA
BAID- 60 RTS

BAIE- SEEKABS - nOVE HEAD
BAIE- RUTS DOES

BAIE- 85 2A STA
BA20- CD 78 04 CMP
DA23- FO 59 BEO
BA25- 86 2B STX
BA27- A9 00 LDA
BA29- 85 26 STA
BA2B BA75
BA2B- AD 78 04 LDA
BA2E- 85 27 STA
BA30- 38 SEC
BA31- E5 2A SBC
BA33- FO 42 BEG
BA35- BO 07 BCS

BA37- 49 FF EOR
BA39- EE 78 04 INC
BAX- 90 05 BCC
BA3E BA35
BA3E- 69 FE ADC

FWAUG Newsletter

«BC66.X

S27

$26
$RB66.X
($3E),Y

$26
H$07
$BB99,X
<$3E),Y

$27
tl$07
$BBCG.X
($3E).Y

$8905
$BC99

$BBFF
($3E),Y

$2A
$0478
$flA7E
$2B
«$00
$26

$0473
$27

$2A
$BA77
$BA3E

H$FF
$0470
$BA43

«$FE

Reedij for next byte
Do part 2«section 3
Again ignore 3 bits

Put neui low order in with bits
... already in $27
Same again for the two bits
... in $26
Add part 2 to part.1« section 2
Store into next spot in buffer
as before
Now use the 3 bits in $26
... to 00 with part li
... section 3 .
Store into buffer

And lastly use 3 bits in $27
... with part 1>-section 4

Store into buffer

Back up one byte in each section
If any are lert> then loop
Get "last" nibble, part 2
Ignore low order 3 bits

Add in "last" one, part 1
And put in into the buffer
Finally, we're finished

$2A gets desired track
Compare to current track
IF equal, we are through
$2B oets the current slot number
Count loop iterations in $26
... used to calculate wait times

Get the current track
Save it for later use
Subtract the desired track

If we are there we can leave
CS -> current > desired
(ie. Result is positive.)
Acc<0. Set Acc= ABS(Acc)-l
Set for next track
Carry is always clear, just skip

Carry is set. So, Acc=acc-1.

28

10 FWAUG Newsletter Marcti 1980

BA^- CE 78
tA^3 BA3C

C5 26
BA^5- 90 02
EA^7- A5 26
BAA9 BAAS
BAA9- C7 OC
EAAB- 90 02
EAAD- A9 00

OA DEC ♦0A7B

Clip $26
BCC $BAA9
LDA $26

CUP «$0C
BCC iOAAF
LDA H$OB

Set for next track.

Acc = ffl in <Acc> ($26). I«$0B)

BAAF BAAB -- TURN ON mTOR WINDING

BAAF- A8 TAY
BA50- AD 78 OA LDA $0A7e
EA53- 29 03 AMD H$03
BA55- OA ASL
EA56- 05 2B URA $28
EA50- AA TAX
BA59- BD 81 CO LDA $C081/X
0A5C- 09 90 BA LDA $8A90.Y
HA5F- 20 7F BA JSR $DA7F
EA62- A5 27 LDA $27

Acc is notD minimuffl of:
... A. H of tracks to move less 1
... B. tt of iterations so far
... C. eleven (or $0B)

Save Acc in Y for table offset
Get Next track number (xxxx xxxx)
Only keep 2 bits 0-3 (0000 OOxx)
Shin left (0000 OxxO)
Add in the slot numberXOsss OxxO)
That ooes in X to reference right
... slot and PHASE-ON number xx
Get amount of time to wait
Go oait that long
Calculate PHASE-OFF by using

DA6A - TURN OFF LAST HOTOR UINDING TO ALLOW HEAD TO FINISH STEPPING

... same formula as above.

... Except use "current" track

... as basis.

Phase-off
Get correct amount of time
... to wait and wait it out

Count iterations of loop
Always taken

BA6A- 29 03 AND «$03
eA66- OA ASL
nA67- 05 2B ORA $2B
nA69- AA TAX
EA6A- BD 80 CO LDA $C0B0» X
BAAD- B9 9C BA LDA i3A9C,Y
BA70- 20 7F BA JSR $BA7F

BA73- E6 26 INC $26
DA75- DO BA BHE $r)A2B

Amount of time to wait (1/A sec)
Long wait lets head settle
X gets the slot number back

And we are finished

EA7F BASF - ROUTINE TO WAIT A LITTLE BIT. ACC HO-D TIC LENGTH OF
EA7F BA70 THE WAIT. TII1E IS IN ROUGHLY 100 fllCRO SECOND UNITS
GA7F BA79
BA7F BABD
nA7F- A2 11 LDX «$11 Do this little loop 17. times

BA77 BA33 - WAIT SOUE AND RETURN TO

BA77- A9 FF LDA H$FF
BA79- 20 7F BA JSR $BA7F
DA7C- A6 2fl LDX $2B
I)A7E BA23
BA7E- 60 RTS

29

March 1900 FWAUG Newsloher 1 1

BA81 BA82
BA81-
BA82-
BA8A-
BA8d-
BA8a-

CA

BA8A BA86
BA8A- 38
BA8B- E9 01
BA8D- DO FO
BASF- dO

DEX
DO FD BNE
Ed 4d INC
DO 02 BNE
Ed 47 INC

SEC
SBC
ONE
RTS

$BA81

$BA8A
$A7

ttiOl
iBA7F

Just count to waste time

How count the total number of the
... lOO microsecdnd ubits so wc
... know if disk is up to speed.
... (Called nONTine in RUTS)

The Acc has the number of 100
... microsec. So one less to do
Loop if any left

BA90 - Table of Phase~on times to wait

BA90 BA5C
BA90- 01 30 28 2A 20 IE ID IG
BA9B- IC IC IC IC

BA9C - Table of Phase-off times to wait

BA9C BAdD
BA9C- 70 2C 2d 22
BAAO- IF IE ID IC IC IC IC IC

BAAB- TABLE OF NIBBLES IN POSITION OF CORRESPONDING DISK BYTE
(IE. AO->00. AD->08, AE->10. AC IS NOT VALID* IN FACT
ANY BYTE UITN BITS 0,1 OR 2 SET IS NOT VALID) OFFSET
FROn «BAOO. (DISK BYTES —> NIBBLES)

BAAS
BAAS
BAAB
BAAS-
BABO-
BAB8-
BACO-
BAC8-
BADO-
BAD8-
BAEO-
BAEB-
BAFO-
BAF8-

B92A
B93B
B9A0
• 00 00
• 02 03
■ 07 09
• OB OC

■ 1^ 15
• ID IE
25 2d

■ 29 2A
• 32 33
■ 35 3d
• 3B 3C

00 00
04 05
38 40
OD OE
Id 17
21 22
70 78
2B 2C
98 AO
37 39
D8 EO

01 08
Od 20
OA 48
OF 11
19 lA
23 24
27 80
20 2E
34 AB
3A CO
3E E9

10 18
28 30
50 58
12 13
IB IC
dO dB
88 90
2F 31
BO 68
C8 DO
FO F8

BBOO B80B - PART 1,
BBOO B8BE
BBOO B8CE
BBOO B940
BBOO B9D1
BBOO-
0B33 BSld - PART 1,
BB33 B9E3
BBSS-

SECTION 0 MEMORY BUFFER FOR NIBBLES

.OS
SECTION

i33
1

.DS $33

30

FWAUG Newsletter March 1980

BE(6A BB21 - PART 1, SECTION 2
BlIAA BVF'j
BDAA- .08 $33
BD99 B830 - PART 1. SECTION 3
BB99 S9FF
BD99- .09 $33
BBfX B83D - PART 1, SECTION A
DBCC BA09
BBCC- .08 $33
BDFF B866 - PART 1, "LA8T" BYTE
BBFF B8A9
BDFF BA18
BDFF- .OA HO ONE BYTE
BCOO B8A5 - PART 2, SECTION 0 OEIIORY BUFFER FOR NIBBLES
BCOO B87B
BCOO 60A6
BCOO B92F
BCOO 09C5
BCOO .08 $33
BC33 B8AC - PART 2. SECTION 1
BC33 B907
BC33 .08 $33
BCA6 B853 - PART 2, SECTION 2
BCA6 a9E9
BC66 .08 $33
DC99 B85F - PART 2, "LAST" BYTE
DC99 BA12
BC99 .OA HO ONE BYTE

nC9A- TABLE OF BYTES FOR DISK SURFACE. USED TO CONVERT RIGHT JUSTIFIED
"OOOXXXXX") JUST BEFORE WRITING.

(NIBBLES —> DISK BYTES)

BC9A B8AD
BC9A B8C2
8C9A B8D5
DC9A- AB AD AE AF B5 B6 « +-./5A
BCAO- B7 BA BB BD BE BF 06 D7 w7:j=>?VW
BCA8- DA DB DD OE DF EA EB ED wZ
nCDO- EE EF F5 F6 F7 FA FB FD «
nCDB- FE FF »..

EVER USED. BUT HERE IT IS AS DATA AND CODE
(WHERE IT MAKES CODE) FOR YOUR PERUSAL-

BCBA- IC IC IC 00 00 00 K
BCCO- M 20 B9 DO 3C AO 05 AC K$-9P< .L
DCC8- OA 3E 00 00 00 00 00 00 «.)
nCDO- 00 05 OA 02 07 OC OA 09 n
(ICD8- 01 06 OB 03 08 00 00 00 «
BCFO- 00 00 00 00 00 00 00 00 «
nCFO- 00 00 00 00 OO OO 00 00 W
UCFO- 00 00 00 00 00 00 00 00 «
ncrn - oo oo oo oo oo oo oo oo «

31

March 1980 FWAUG Newsloher 13

BCCO- M 2D LDY «2D
BCC2- B9 DO X IDA $3CD0.Y
ecc5- AO 05 LDY Hi05
BCC7- AC OA 3E JliP i3£0A

FWAUG

BCCO- THIS CODE niGHT BE USED DURING HASTEH BOOT OR RELOCATE

The byte loaded is a 2erQ now
... its the same as ♦BCDO
This is now iBEOA

C081 BA59 Phase OFf (similar to Phase On)

QA Q7 Use of Q6 and Q7 lines in Disk Interface card

lo lo - Read (disk -> shift register)
I9 hi - Write (shift register -> disk)
hi lo - Sense write protect
hi hi - Load shift register from data bus.

C08C B882 Set QA low
C08C B8B5
C08C BQCB
COBC B8EF
C08C 88F9
COaC B902
COQC B90C
C08C B917
C08C B925
C08C B93A
C08C B94A
COOC B950
C08C B95A
COaC B970
COBC B97A
COBC 8985
C08C 8992
C08C fl 99A
C08C B9AC
C08C B9BA
COBD B8AB Set QA high
COBO B8B2
COBD B8C8
C08D BBFA
COSE B8AE Set Q7 low
C08E BBEC
COBF B87F Set Q7 high

n

32

<<< WANT AND DON'T WANT ADS >>>

EVER USED A COMPUCOLOR as an RS-232 terminal? Know who can

repair one? Call Fred Gerlach, 981-4409, if you have or
you do.

DI/AN PRINTER, Used and for sale in good condition with
I/O device and software, Lewis Melton, 981-8866,

SELL HEATH H-14 DOT MATRIX PRINTER, tractor feed, 3
character sizes (80, 96, and 132 char/inch,), forms
control, RS-232 or current loop. New cost from Heath is
$900, Will sell for $600 firm. Call Mike Kramer, 358-6687
after 5;00 pm.

WANT TO BUY A D,C, HAYES MICROMODEM for the Apple, Call
Pat McGee, 663-6806,

SELLING MY APPLE II+! 48K, disk. Integer Card, Atashi 19"
B&W monitor, about 30 diskettes including the Muse
Super,Text word processor. The works, $1550, Johnny
Earl, 433-1339 after 6:30 pm.

SANYO MONITORS AVAILABLE IN GROUP PURCHASE, We need a

minimum of 6 ordered if we are to get the special prices,

13" color $430, + tax (30-day delivery)
9" B & W 169, " (stock)
12" B&W 200, " (8-10 days delivery)
15" B & W 250, " (stock)

If you are interested contact Ray Essig, 493-9980 or
497-7165 (evenings),

BACK ISSUES OF APPLE BARREL are for sale in limited
quantities! Many of you have inquired about their
availability. The following back issues can be bought by
mail for $1,00 each. postpaid:

vol. 2 no. 5 August, '79
vol. 2 no. 6 Sept/Oct, '79
vol. 3 no. 1 January, ,'80
vol. 3 no. 2 February, '80
vol. 3 no. 3 Mar/Apr, '80
vol. 4 no. 4 May, '80
vol. 5 no. 5 June/July, '80
vol. 6 no. 6 August, '80

This is a chance for newer members of HAAUG to catch up on
programs, news, reviews, etc. Sorry, but there will be NO
reprints when these are gone. Make checks payable to
H,A,A,U,G, and send to Apple Barrel; Ed Seeger, Editor;
4331 Nenana Drive; Houston, TX; 77035, Please allow 10
days for delivery.

Houston Area Apple Users' Group
APPLE BARREL

Ed Seeger, Editor
4331 Nenana Drive

Houston, Texas 77035

(713) 723-6919
BULK RATE

U.S. POSTAGE

PAID

HOUSTON, TEXAS
PERMIT 3936

H.A.A.U.G

Postmasters:

Address correction requested:
Forwarding and Return Postage Guaranteed

