Mews from the Rpple Barrel

Volume \#2 No. 2

June, 1979

President, Dewayne Van Hoozer
Editor, Ed Seeger

*** NEN APPLE PRODUCTS ***

APPLE COMPUTER INC. has announced a number of new peripherals and exhibited them this past week in Chicago at the National Computer Conference. Scheduled for release over the coming summer are such goodies as a GPAPHICS TABLET, AUTOSTART ROI: (to boot your DOS upon turning on the system), a CLOCK-CALENDAR CARD (from Mountain Hardvare), the DISK UTILITY PACK (DOS 3.2, manual, and several utility routines), a DESK and "DESK RETURN" (actually a sort of credenza to hold a printer alongside the desk), and then yes, Virginia, Uncle Apple will soon take orders for THE LAHGUAGE SYSTEM, better known as PASCAL! List price -- \$495.

THE LANGUAGE SYSTEM, will be a three-language ROM card that will load Integer Basic, Floating Point Basic, or Pascal into an additional 16 K of RAM. Got it? The Apple ll will in effect become a 64 K machine. Our Applesoft ROMcards have been a bust for those who choose to use Pascal. Apple owners who have held off on springing $\$ 200$ for the Applesoft Rollcard will be in luck, however, as a used market develops for these things. Use your tape or disk versions just a little longer; your patience will be rewarded! Delivery of the new system is forecast for September. Funny how you ensinecring types who feared foreign languages in college can't wait to learn Pascal! What a chimera then is man! What a novelty! lihat a monster, what a chaos, what a contradiction, what a prodigy! Judge of all things, feeble worm of the earth, depository of truth, a sink of uncertainty and error, the glory and the shame of the universe." -- Blaise Pascal

bus
 Hemmis A．Cornwell

One of the least expensive（and thus surprisingly underpublicized） accessories for the AFFLEE II is the Frogrammer＇s Aid \＃1．The purfose of this article is to discuss its features plus give some of this author＇s highly subjective views on its value．

The FA非 is a single 2k゙ーoute Fiom chip which plugs into socket $\quad 10$ of your AFFIEE．It contains a＂lihraru＂of routines which integer Basic users frequently meed but don＇t always have easy access to．It really is an ex－ tension of the monitor and integer Easic that comes built into gour machine

The FAlll has six main capabilities：
－program remumbering and appending
－－tape verification（both Basic and machine language）
－machime language program relocation
－FAM memory testing
－music tone genemation
－－hi－wes grapinic gemeration
Once the chip is installed（which the accompanging manual shows fou how to ao），all of the above are accessable from your ceyboand without additional loading，etc．

Before going into the detajls of each routine，a few general comments． First，the documentation is excellent．The manual is over 100 pages long and is full of examples（set in green tupe to stand out），has all the source assembly listings，phus a terrific summry of al．FA\｜ys commands． This summary is in the back of the book which makes it very hande to fle： to when fou＇re using a routine and don＇t need all the detadis about it－ yust a refresher course，so to sperat．

Gecond，it doesn＇t take away from any of gour usable FAM，thereby re－ ducing the space avallale for your program．It actually will allow you to write longer programs since it eliminates a lot of coding bou har to have
 Whes），just under the Eosic and mondtor fom areas．
……－Frogram renumbering and appending
How many times have you written a program and then wanted to insert a mew block of code－only to find that gou don＇t hove sufficient，line mum－ hers in the desired area？or wanted to tack one routine on the end of amother？Well，this sure beats doing i．t through the kegboard ome lime at a time．

This section is really three（3）separate routimes：
－．．remambering an entire program
－－remumbering onle a portion within a program
－adding one program to another

Let's say gou have a program that was numbered like this:

$$
7
$$

$$
\begin{array}{r}
213 \\
527 \\
698 \\
13000 \\
13233
\end{array}
$$

(must have been done late at night!)
and wanted a little more 'continuity' in the numbering. With the FA\#1, you would type

$$
\begin{aligned}
& \text { CLF } \\
& \text { STAFT }=1000 \\
& \text { STEF }=10 \\
& \text { CAL.L. }-10531
\end{aligned}
$$

The following would appear on the scmeen:

$$
\begin{aligned}
& 7-71000 \\
& 213-71010 \\
& 527-71020 \\
& 698-71030 \\
& 13000-71040 \\
& 13233-71050
\end{aligned}
$$

Now, not only are gour lines remumbered but also any references to a line number are updated (such as a GOTO, GOSUB). However, if an arithmetic expression or variable is used in a goto or gosub, that expmession will generally not be remumbered correctig. For examrie, goto TEST or gosub $10+20$ will not be remumbered. (This might be something that a later version could at least flag for you-are you listening, AFFLE?

Now, let's say you have a program that was mumbered dike this:

$$
100
$$

$$
120
$$

$$
300
$$

$$
310
$$

$$
402
$$

$$
500
$$

$$
2000
$$

$$
2022
$$

and gou want to remuber only the lines between 300 and 500 . You would tupe:

CLIR
STAFT $=200$
STEF $=20$
FROM $=300$
$\mathrm{TO}=500$
CALL - 10521
The following would appear on the screen:

$$
\begin{array}{ll}
300-3 & 200 \\
310-3 & 220 \\
402-> & 240 \\
500-7 & 260
\end{array}
$$

and the new program line numbers will be:

There is one catch to this--uou can change line 'mumbers' but not the line 'order'. In other words, if you wanted to insert lines 2000 and 2022 between lines 120 and 200 , gou couldn't remumber them to 150 and 160 , respectively. (Another suggestive hint from the users, AFFLEE!)

Note: nidg ever wonder how people put line numbers in their programs that were higher than 32767 ? Well, this section is one way-tiry renumbering using a 'negative' STEF value. Gives some interesting results.

To combine two programs (or portions of programs), you first need to remumber them so that there is no overlap on line mumbers (i.e., one pro gram's mumer must be greater than the other's). Let's call the program with the high mumbers, Frogram 2 , and the one with low mamers, Frogram 1. (prettu high level stuff, eh?) Now load frogram 2 into the AFFle using the normal. LoAn command. Then put, the Frogram 1 tape into the recorder, tupe CAlL - 11076 and start the recorder again. This will give the wsual two beeps (if loaded successfully) and your two programs are now Linked together (assuming there's sufficient memory for both).
--- Tape verification (Basic and machine language)
If gou're like I am, gou've occasionally spent several minutes (and a few droplets of perspiration) wondering whether your only version of a program got saved correctily to tape. And to further add to the dilemma, the only way to check is to re-load the just taped version--thus destrouring what previously was in memoery. So if the SAVE wasn't good, gou gust destroyed what was.

The FA:Fl eldminates this worry hy comparing what's on the tiape and what's in memory. Ang changes between the two versions prompts an error message. You can then go back and re-save the tape.

To verify integer Basic, save gour program in the usual way, rewind the tape and type:

CALL - 10955
If the AFFLE beeps its usual two times, the tape is okay. Otherwise, the EFR messuge occurs.

To verify a machine language write, first write the desired portion of memory as usual:

STAFT. STOFW (where STOF \& STAFT are in hex) (rewind tape) LIS2EG STAFT.STOF entl Y
and start the tape again. Any difference will generate an error message and display the location involved.

Although this could be a hander feature, I seldom use it because I haven't had that much trouble with tape saves (or could it be because I now have a disk?)

Although I run the rist: of offending some of H.A.A.U.G.'s more tech-nidal-minded memhers, this feature is one I've never used. Because I mever used it (or machine language to any large degree), this section will be more on 'how' to use the feature it than on 'what' it might be used for.

In simplest terns, these routines tal:e blocks or segments of machine code and/or data and modifiies them so that they run correctily in a different location of memory:

It says it can be used to combine two programs which ran from the same memory area separately but now must run concurrentiy; place fom code into FAM (or vice versa) for 'experimental' purposes; or move a routine (or group of routines) to different locations.

To 'relocate' a thock of 'code', tupe (from the monitor):
114115G
AMMRESS3CAMMFESS1. AMMRESS2 ent. 1 Y
where

To 'move' a block of 'data', tupe
[1415G
AMURESS3KAMUFESS2. AMMFESS1 M
Notice that code is handled differently from data due to the meed to handle pointers, multi-bute attributes of code, etc.

Here again. I will leave it to some of our more 'gut-level' members to Fill the above gap.
...-- - FAM memory testing
For those of gou have bought (on plan to bug) additional RAM capacity, this is a reassuring little feature to have at the time of purchase and even beyond. The testing is done by writing a mumber to each memory address in a specified test range, and then reading the mumber stored at each address, and comparing.

Two teges of errons can he detected: simple and dgmamic. A 'simple' error occurs when the mamer written to an address is not the same mumber when read bact: from the 'same' address. A 'dumamic' error occurs when the writing of a number to one address causes a number to change at a differ rent' adrlress.

To mun a test, hit 'reset' and then type:
ISECG
a . p enti Y
where
'a' is the starting address of the test range, and
'p' is the mumber of 256 bute (100 hex) 'pages' you wish to test. 'p' * 1.00 camot be > 'a'.

A complete test for a $48 k$ sustem is:

पISBCG

400.4 cntí Y	Test for Fow 'c' (screen)
800.8	- "
1000.10	"
2000.20	"

3000.20 " Boundary test between C / I 4000.40 Test for Row 'ri'
7000.20 Eoundary test between IIE 8000.40. Test for Fiow ' E '

The above can be tuped separately or all on one line as a single command. It tatees about $3-4$ minutes to mun a $48 k$ test.

In addition to this single cucle test, you can also do an automatic remeating test. This tests continouslu until you stop it or it detects an error. To run this, tupe
ngecg
N (followed hy the desired tests) 34:0
Although this is a useful test, it's dull to watch except when doing the screen area when it produces an interesting graphic effect.
I. am also truing to figure a way to store tife test instructions in a dist: file rather than having to retupe it each time. Angone figure this one out get?
--.--Music tone generation
For those of us that engoy the musical aspects of the AFFLE, there were two (at least) ways to produce sounds. One is the rather obtuse method of FEEKing and FOKing location -16336. The other was using the machine languge routine described in the red AFFIEE I Feference Manual. Goth are somewhat limited.

The FA非 music routines go a level above the former bu letting the programmer control the pitch (high or low note), duration and timbre (a tone qualitu factor).

There are 50 motes available (1 to 50) in the routimes with note \# 32 about middle ' C '. Any increment of one for the pitch variable produces a semitone difference. Thus note \# 33 is ' C ' sharp, etc.
muration can be be assigned a value of between 1 and 255 with 170 being equal to about one second. Timbue can have five values: $2,8,16$, 32. and 64.

These variables (pitch, duration and timbre) are set from within the program by Foking locations 767, 766, and 765, respectively. The note is phaged by CAlling location -10473 .

A sample frogram for the plaging of a chromatic scale of four octaves:

$$
\begin{aligned}
& 10 \text { MUSIC }=-10473 \\
& 20 \text { FITCH }=767: \text { TIME }=766: \text { TIMERE }=765 \\
& 30 \text { FOKE TIME, } 40: \text { FOKE TIMBRE, } 32 \\
& 40 \text { FOR I }=1 \text { TO } 49 \\
& 50 \text { FOKE FITCH, CALL MUSIC } \\
& 60 \text { NEXT I : ENI }
\end{aligned}
$$

.....-Hi-Hes graphic gemeration
The largest section in the FA非 manal is dedicated to hi-res graphic routines. It is an extensive and interesting section which, once mastered, can really help you produce a great deal of slick output with considerable Ease.

One of the biggest gripes I originally had with my AFFlew was the awt: wardmess of using hi-res from integer Bosic. First fou had to load the machine subroutines from tape. Then you had to foke younself til gou were blue in the finger generating the desired display. When f finaly got my AFFLESOFT/ROM-rard, there was a quantum leap in programming ease-no tapes plus a greatly reduced requirement for Foke's.

The FAlll gives the integer Basic programmer essentially the same capabilities as does the FOM version of AFFIESOFT (please make sure wou're differentiating between the cassette FAM version and the fom plug-in card). I say essentially because the fally has most (but not all) of the features of the Fom cond pilus a few thot the Fom card doesn't have. The following wable illustrates both's capabilities:

Initialize and clear screen
Up to 8 colors (only 4 on systems with $5 / n(6000$)
Solid background in a single command
Flot or position a point (including x, y co-ords) in a single command
Oraw a single line in a single command
anraw mutiple lines in a single command
uisplay two different pages of memory
Misplay $280 \% 160$ matrix plus 4 limes text
Misplay 280×192 matrix with no text
Handles shape tables (IFRAW, SCALE, FOT, SHLOAII) Single command shape emase (XIFAW)
Single command shape lintoge (DFAWi)
Finding a shape's last point location/color
Getermje whether two shapes collide or overlap

U6:5	U6
प1* 5	yes
Less	no
no	는
no	yes
no	LGES
LiES	Yes
Les	yes
yes	UES
UES	4ES
no	Yes
lies	no
66:	no
Lex	no

As you can see above, the big drowbact: (pardon the pun) to the folll is that it camot handle a FOSN, FLot or LINE in a single command (assuming the colon has already been specified). As an example, the following are the statements mecessary to phot a white square box on a solid green screen in both integer Basice with FA:B and AFFLESOFT/FOM:

CALL - $12288:$ FEM INTTIALIZE/
CALL -12274: REM CLEAR
$X 0=0: Y 0=0$
COLF $=42:$ REM COLOF $=$ GREEN
CALL-11471: FEM SOLIA BACKGFOUNA

COLF $=255:$ REM COLOF $=$ WHITE
CALL -1.1506: FEM FLOT FOINT 1
$X 0=0: Y 0=159$
CALL -11500: REM DFAW LINE 1
$X 0=279: Y 0=1.59$
CALL -11500: FEM IIFAW LINE 2
$X O=279: Y O=0$
CALL -11500: REM DEAW LINE 3
$X O=0: Y O=0$
CALL -11500: FEM IRAAW LINE A

HGF: FEM INIT/CLEEAR

```
COLOF = 1. FEEM GREEN
FOR Y == 0 TO 159
FOF X = 0 TO 279
HFLOT X,Y : REM BACKGROUNI
NEXT X: NEXT Y
COLOF = 3: FEM COLOF = WHTTE
```

,

HFLOT 0,0	TO	0,159
	TO 279,159	
	TO	279,0
	TO	$0,0:$ FEM LIFAW BOX

However, when comparing the F'Al: to 'normal' integer Basic, it still can save considerable time Even when FOSN, FLOT or LINE are used.

The FA:lly heres routines worl: under the assumption that the CALL para-
 variables defined and exactig in this order. This is because the routimes, when called, loot to the first locations in the AFFles variable table for the required values. Not at the names, but at the values-hence the order.

The mamal also goes into quite a bit of detail about the creating, storing and use of shapee tables. These can be very useful but incredibly dull to produce and input. (the easiest way to do a table I've found is to heg, borrow or steal (buy?) a copy of Creative Computing-July/August, 1978 which has a routime to do it automatically while you just draw the shape on the screen.) The manual also goes into detail about using shape tables with a dist: which is mice.

Overall, my feelings towards the FAll are very positive. It's quite versatile and very handy to use being in Fom. I think I've gotten my mones's worth out of it already and I haven't used it as much as f pian to in the future.

Would I recommend that every AFFIE owner mush out and buy one? Well, mathe. It depends on gour situation-mimarily on whether you do or do not have two things alleady:

- an AFFLESOFT/FOM rard
 - a MISK II

If you have the FOM card and are a die-hard, 'floating-point phreague', don't buy one. You have the hi-res capabilities alreade and gou probably won't use the other integer Basic rodtines angwar. Save the $\$$ bo and blow s7. 50 of it on a FAM test cassette.

If you have a IISK II, the decision is not as clear cut. Most of the routines on the FABl are available on dists (by hook or crook). And once on a disk, they're just about as accessable as being in Fom. Besides, some of FA非's routines don't work on dists files e.g., append and verify (AF'FLE hint, hint!).

However, if gou don't have a FOM card or a IISK II, it's well worth the $\$ 50$. Just adding the estimated retail value of the semarate routines could get gou past the cost in a hurry. Flus it sure makes some things a heck of a lot easien to do-mand the easier things are, the better I latre 'em! !

**** A NOTE OF ACK゙NOWLEIGEMENT $* * * *$

All of the above exampless came from the forlli "Installation and Operating Mamula plus just dam well all of the juforma tion besides. I appreciate their permission to use it in the article.

IIAC:

Abstract

SEE-LOAD *** Radio Shack announces at last the solution to the heartbreak of keybounce on its TRS-80. Actually, several solutions are available. Their May, 1979, "Microcomputer Newsletter" advises that microsurgery with a paperclip may do it. Or you can buy a whole program (!) if you wish. And rumor has it that a new upper-level version of their BASIC has ended bbbbounce for ever. One Fort Worth worthy was seen last Saturday morning over in lingerie at Nieman's, trying out foundations. ("But she told me it would eliminate all my jiggle...") Probably thinks the $Z-80$ is a Datsun, too!

Speaking of the competition, following is a release hot off the Texas International wire:

HOME EOMFUTER ANNOLNCEE:-TI JUNE 1 ANNOUNCED ITS HOME COMFUTER, MODEL TI-99/4, TO EE INTRODUCED AT THE EUMMER CONGUMER ELECTRONICS SHOW IN EHIGAGO UINE 3-G.

THE HOME COMPUTER SYSTEM CONSISTS DF A CONSOLE WITH 1GK FANDOM-ACCESS MEMORY, SOUND, GRAPHICS, EXTENDED BASIC" COMPUTER LANGUAGE, AND A $13-I N C H$ COLOR TV MONITOR. IT IS TG BE AVAILABLE IN LATE SUMMER AT A GUGGESTEI RETAIL FRIGE OF \$1,150. SOLIL-STATE SOFTWARE COMMAND MODULES FOR THE SYSTEM WILL CARFY SUGCESTED RETAIL PRICES RANGING FFOM $\$ 19.95$ TO $\$ 69.95$.

THE COMMANI MODULES WILL ALLOW USERS TO ACCESS FROGRAMS WITHOUT NEEDING TG EE FAMILIAR WITH COMFUTERS OR COMFUTER FROGRAMMING: MOIULEE AVAILABLE AT THE TIME OF INTRODUCTION OR BY YEAR-END INCLUDE DEMONSTRATION AND IIAGNOSTIC MODLILES: AND MODULES FOR HOME FINANCIAL DECISIONS, EARLY LEARNING FUN, BEGINNING GRAMMAR, NUMBER MAGIC, UIDEO GRAPHS, HOUSEHOLD BUDGET MANAGEMENT, VIDEO CHESS, FOUTBALL, PHYSICAL FITNESS, SFEECH CONETRUCTION, INVESTMENT ANALYSIS, TAX ANU INVESTMENT RECORD KEEFING, STATISTICS, AND EAFLY READING. *
GERMANIUM FRODUCTION FHASED OUT. -TI HAS FHAEED OUT OF THE GERMANIUM TRANSISTOR BUEINESS AFTER 25 YEARS ANO SOME 2 EILLION UNITS OF FRODUETIGN. HISTORY OF TI INVOLVEMENT IN THE EUSINESS WAS RECITED MAY 31 AT A LUNGHEON FOR KEY PRODUCTION IFERATIONS AND MANAGERE UN THE FRGGRAM. TI IGHMN. MARK SHEFHERD, ,IR., FROJECT ENGR. FOR THE PRGIUCTIUN START-LIF IN $195 今$, CREDITED SUCCESE DF THE FROGRAM TO THE TIERS INUOLVED IN IT OVEF THE YEARS.//END T NEWS UUNE 1 , 1979//
*** APPLESOFT SYMBOL TABLE PRINTER PROGRAM ***
PHIL ROYBAL, Product Marketing Manager of Apple Computer lnc., has sent along a brief sub-routine to be appended to your Applesoft programs. To quote from his accompanying letter:
"Enclosed you will find a listing of a program that will print the symbol table of any Applesoft program. This iittle program may be appended on the end of an Applesoft program and called as a subroutine. Of course it cannot be "RUN" since Run clears the variable table. Therefore it must be called from within a program or used with a "GOTn". In any case you will find this program handy for working over software you get from other people. It's especially useful when you ${ }^{\text {b }}$ re trying to find an unused variable that you can use for some sort of. a patch. I hope you enjoy it."

Your editor appended it onto Swords and Sorcery!, a Middle-Earth-type adventure program, written in Applesoft, and loaded with variables. It's on vol. \#14 of the HAAUG Software Library. Following is a print-out of the symbol table, along with a listing of Phil's program. Thanks, Phil, for helping us out with a program when the Houston crowd ran dry!

```
W2
N$
13
|1
X1
V
| 1 $
F1
W1
C1
Y1
V1
C2
Ll
T1
C3
Z1
S1
L2
LO
DO
I2
E1
P3
D3
I
P7
D4
F5
APPLESOFT ARRAY VARIABLES
H=$
)
LIST32000,32767
32000 REM APPLESOFT SYMBOL
30002 REM ======================
32005 HOME : PRINT "APPLESOFT SI
MPLE VARIABLES"
32007 PRINT : PRINT
32008 ZV = 0:ZW = 0:ZX = 0:ZY = 0
:ZZ = 0
32010 ZY = PEEK (107) + 256 * PEEK
(108)
3015 ZZ = PEEK (105) + 256 * PEEK
(106)
32017 |F ZZ > = ZY - 35 THEN 32
210
32020 FOR ZX = ZZ TO ZY - 36 STEP
7
32030 GOSUB 32530
32200 NEXT ZX
32210 PRINT : PRINT "APPLESOFT ^
RRAY VARIABLES": PRINT : PRINT
32220 ZZ = PEEK (109) + 256 * PEEK
(110)
32230 ZX = PEEK (107) + 256 * PEEK
(108)
32235 IF ZX > ZZ THEN 32270
32240 GOSUB 32530
32250 ZX = ZX + PEEK (ZX + 2) +
256 * PEEK (ZX + 3)
32260 GOTO 32235
32270 END
32530 ZV = PEEK (ZX):ZW = PEEK
(ZX + 1)
32540 PRINT CHR$ (ZV); CHR$ (ZW
);
32550 IF ZV < 127 AND ZW < 127 THEN
    PRINT : RETURN
32560 IF ZV > \ 127 THEN PRINT "%
32570 PRINT "$": RETURN
```

Larry Shurr

Have you run home with your new copy of APPLE DOS 3.2, booted it up and tried to run your assembler yet? If you have, you know that it all comes crashing down around your ears. As you survey the wreckage, however, do not despair! The required patches are quite simple. Use the following procedure to create S-C ASSSEMBLER 3.2 and all your problems are solved:

```
BLOAD the assembler
CALL -151 (call monitor)
11D0:B
11D5:51 A8
3DOG (re-enter BASIC)
BSAVE S-C ASSEMBLER 3.2,A$1000,L$C00
(re-enter BASIC)
```

The routine this will change begins at $\$ 11 \mathrm{C} 1$ if you would like to look at it. It is part of the assembler's initialization to link into the DOS I/O hooks and restart addresses. You will see that the routine computes an entry point into DOS, modifies itself (shame! shamel), and jumps to that address. Of course, that entry point was changed in DOS 3.2 just to mess us up. The patches make the routine compute the correct address. Naturally, this means that S-C ASSEMBLER 3.2 will only run under DOS 3.2.

FUNCTIOH:?r
MSG\# TO RETREIVE (1/2) ?1
MSG \# 1
SUBJ.: HAAUG ABBS
TO: ALL.
FROH:: DEWAYNE VAN HOOZER DATE:

WELL IT IS FINALLY HERE. THE LONG ANAIT AWAITED ABBS SYSTEM IS UP AND RUNNING.

THIS SYSTEM MAY BE USED FOR MANY DIFFERENT PURPOSES. THE USEFULLNESS OF THE SYSTEM IS COMPLETELY UP TO YOU.

ED SEGER SAID THAT YOU MAY ENTER QUESTIONS FOR DOCTOR APPLE VIA THE ABBS BY REPLYING DOC APPLE TO THE 'TO' FIELD IN YOUR MESSAGES.

I HAVE ALSO BEEN INFORMED THAT THE MAD BOMBER WILL AT TIMES RESPOMED TO QUESTIONS THROUGH THE ABBS. (SEE MESSAGE TWO FOR MORE)

MSG\# TO RETREIVE (1/2) ?2 MSG \# 2 SUBJ.: HAAUG ABBS TO: ALL FROM: DEWAYNE VAN HOOZER DATE:

IF YOU HAVE ANY QUESTIONS OF COMMENTS CONCERNING THE OPERATION AND/OR PROJECTS OF THE HOUSTON AREA APPLE USER'S GROUP, PLEASE ADDRESS THE MESSAGES TO 'HAAUG'.

COMMENTS CONCERNING THINGS YOU WOULD LIKE FOR HAAUG TO DO AS AN ORGANIZATION WILL BE DISCUSSED BY THE EXECUTIVE OFFICERS AND PRESEITED AT THE NEXT MEETING.

IF I CAN BE OF ANY HELP TO YOU PLEASE
CALL ME AT (713) 682-2126.
THANKS FOR YOUR SUPPORT
D.V.

FOLLOWING IS A BRIEF LIST AND DESCRIP－ TION OF THEV COMMANDS AND THEIR USAGE： ABBS
CTRL E－－RETYPES CURRENT LINE UP TO PRE－ SENT POSITION AND ALLOWS YOU TO CON－ TINUE FROM THAT POINT．

CTRL H（BACKSPACE）－－ALLOWS YOU TO BACK－ SPACE ONE CHARACTER AT A TIME AND PRINTS A＇\＆＇FOLLOWED BY THE CHAR－ ACTER YOU ARE BACKSPACING OVER．THIS IS THE SAME ROUTINE AS IS USED FOR delete or rubout instead of true de－ LETE．（FOR THE BENEFIT OF PRINTERS）

CTRL U（FORWARD ARROW）－－STARTS YOU BACK AT THE BEGINNING OF THE CURRENT LINE BEING TYPED．（I．E．START OVER）

〈C／R〉 TO CONTINUE，〈E〉 TO END ？
A－－APPLE 40 COLUMN．NORMALLY YOU NOULD BE ALLOWED 64 CHARACTERS PER LINE． A BELL WILL SOUND AT 59 AND ON UP TO 64 COLUMNS AT WHICH POINT YOU WOULD BE FORCED ONTO THE NEXT LINE OF TEXT． IN THE APPLE 40 MODE，THE BELL WILL RING AT 35，THEN AGAIN AT 38 AND 39． DROPPING YOU TO THE NEXT LINE AT 39. 39 WAS USED INSTEAD OF 40 TO AVOID AN EXTRA BLANK LINE BECAUSE OF THE 40 TH CHARACTER．

B－－PRINT BULLETIN．PRINTS BULLETINS AT BEGINNING OF PROGRAM．

〈C／R〉 TO CONTINUE，〈E〉 TO END ？
D－－DUPLEX SWITCH．ALTERNATELY SELECTS FULL OR HALF DUPLEX OPERATION AND IN－ FORMS YOU OF CURRENT STATUS．

E－－ENTER MESSAGE．ALLOWS YOU TO ENTER A MESSAGE INTO SYSTEM．ENTER COMMANDS ARE BASICALLY SELF EXPLANATORY．A CARRIAGE RETURN（C／R）AT THIS POINT WILL LIST OUT THE COMMAND MENU FOR ENTRIES．THE CHANGE COMMAND AL－ LOWS YOU TO CHANGE AN ENTIRE LINE BUT NOT JUST CHANGE PART OF IT．MAKE SURE WH YOU ARE DONE WITH THE MES－ SAGE TO SAVE IT TO DISC WITH THE ＇S＇COMMAND．

$$
\begin{aligned}
& \text { INPUTLINE >4 CHARACTERS } \\
& \text { REENTER } \\
& \text { ? } \\
& \text { G--GOODBYE. EXIT PROGRAM. } \\
& \text { H--HELP. PRINTS THIS ROUTIME. } \\
& \text { K--KILL A MESSAGE. ENTER THIS TO DE- } \\
& \text { LETE A MESSAGE FROM THE FILE. A PASS- } \\
& \text { WORD MAY BE NECESSARY IF ONE NAS USED } \\
& \text { AT THE TIME OF MESSAGE ENTRY. } \\
& \text { L--LINE FEED ON/OFF. NORMALLY ON. FOR } \\
& \text { TERMINAIS THAT MEED AM EXTRA LINE- } \\
& \text { FEED CHARACTER TO ADVANCE TO THE NEXT } \\
& \text { LINE. }
\end{aligned}
$$

〈C／R〉 TO CONTIMUE，〈E〉 TO END ？
N－－NULLS．ADDS AN EXTRA DELAY AFTER A CARRIAGE RETURN TO ALLOW PRINTERS TIME TO MOVE THE PRINTERHEAD BACK TO STARTING POSITION．THIS OPTION OMLY WORKS WITH THE LIME FEED OPTIDN ON． EACH NULL IS EQUIVALENT TO $30 \mathrm{MILLI}-$ SECONDS DELAY AND IS ADJUSTABLE FROM 1 TO 30．IT DEFAULTS TO ONE．

Q－－QUICK SCAN．AN ABBREVIATED SCAN． SEE＇S＇

R－－RETRIEVE MESSAGES．ALLOUS YOU TO RETRIEVE A MESSAGE FROM THE FILE．
$\langle C / R\rangle$ TO CONTINUE，〈E〉 TO END ？
S－－SUMMARIZE MESSAGES．ALIOWS YOU TO SCAN OVER MESSAGES STARTING AT THE MESSAGE \＃YOU SPECIFY．

T－－TIR：E AND DATE．GIVES YOU THE CURRENT TIME AND DATE．THIS IS ALSO USED aUtomatically during log－in．

W－－WELCOME．PRINTS WELCOPIE MESSAGE AT BEGINNING OF PROGRAM．

X－－EXPERT USER．DOES AWAY WITH CERTAIN EXPLANATORY MESSAGES DURING THE PRO－ GRAM！IT ALSO ALLO！NS CERTAIN C／R DE－ FAULTS．EX：A C／R IN RESPONSE TO FUNCTIONS？WILL PRINT FUNCTIONS SUP－ PORTED BY THE SYSTEM．
*** ASK DR. APPLE ***
+++ IS THERE A WAY OF PREVENTING THE ACCIDENTAL PRESSING OF THE RESET KEY?

1) Yes. Push the button only on purpose.
2) In the Hardcopy Library there is a monograph on how to relocate the reset key to somewhere else.
3) You could put a hinged plastic case over it. Most hobby stores have small plastic hinges which are normally used in building model airplanes, but could be used to help with the reset key problem.
+++ DO YOU HAVE ANY SUGGESTIONS FOR A FILTER TO PROTECT MY APPLE FROM LINE SURGES?

- David Novak

Well, David, it is the opinion of the old Apple Doctor that you don ${ }^{\text {b }} t$ need one. The switching power supply in the Apple protects it from most of the garbage on the line. However, CORECOM makes two models which might be what you're looking or. Models 1EF1 and 1EF2 each sell for about \$9.79. Two Houston stores sell them: Component Specialties, at 771-7237 and Newark Electronics, at 782-4800. A second product you might want to consider is produced by Electronic Specialists, Inc., Box 122, Natick, MA 01760. Their device is a black box which has 6 protected 3-prong sockets. This box sells for $\$ 49.95$. See their ad on page 125 of the June issue of Interface Age magazine.
+++ WHAT IS A GOOD CHARACTER GENERATOR? -- Marshall Martin

1) They say the Army builds men. I wonder if they're LSI or VLSi? 是
2) There are some pretty strong characters coming out of Rice University.
3) Hardware-wise, there's the lower-case chip by Dan Paymar which goes for $\$ 49.95$. Then there's the Super-Rip (uh, super-CHIP), which will be written-up in the next Apple Barrel. Then there are three software approaches. Take the excellent Screen Machine by Programma for $\$ 15.95$. Also coming out is Apple's own hi-res character generator, to be isued as part of a users' Contributed Software Bank. You may find a copy floating around the club. Then there's a "Font-Set" advertised for $\$ 19.95$ in the April-June 1979 Programmers Software Exchange catalog. Ed Seeger has seen a lot of this stuff. Apple Barrel hopes to review both the chip and the several programs in an up-coming issue.
+++ DO YOU KNOW OF A GOOD FLOATING-POINT PACKAGE? M. Martin
4) Never seen a point.
5) How do points float, face up or face down?
6) Do points have hair?
7) I believe there was a pretty complete package detailed in "Dr. Dobbs" March \& April issues. There's nothing on the market that provides a complete floating point package. We are starting to see some hardware boards built around calculator chips coming available. No information yet about the precision or the speed of these new beasties.
+++ WHAT IS THE PRECISION OF THE UCSD PASCAL? -- M. Martin
Larry Shurr said he would call his friends at UCSD with that question. LARRY will tell you all about PASCAL neyt month.
br: Dewayne Van Hoozer

This month Hffllig will be trying several new ideas. First in addition to our resural Wednesdar nisht meetins on June 1Sth we will also have a second meeting on Eaturdar June Exth at 1: Ed pm in the Houston Fmature kadio Cilub building. The HFEC: building is located at rail Lozier which is east of the fistrodome and several block south of CIId Spannish Trail. If rou have problems locating the building on Saturdar please call $747-5017$ for help.

Fit the second meeting we will have several things soing on at once. We will have a software swap, besinners software seminar, and the first of our summer series of hardware construction seminars. The first device we will build is an autoboot device designed and prototrped by John Eirisbin. In order for us to have all the parts readr in time you will have to resister for the seminar br June $20 t h$. The resisteration fee is $\$ 40$. E6. This fee can be pared anrtime prior to the semi nar.

The other projects currently being designed are an orisinaterianswer modem, FS-ES2 c interface and a realtime clock. If you would like to help in the design of the projects or if you have a project of your own that rou think we misht be interested in please give me a call at eqte2126.

The ffple Eulletin Eloard Srstem is finally here. We do not ret have a perminate location for the FEES. It is currently located at Computercraft. You can access the fees br calling 97T-Ta19 after E: 日Gpm.

Speaking of modems, communications and such, Computercraft is offering to Hffllig members a discount on the D. C: HFi'ES Mi cromodem II. See kichard for details. Si nce I'm on the subject of stores, I'd like to welcome a new fif'rle dealer to town. Interactive C:omputers is now selling fFFiLE hardware. Lons noted for their extensive collection of fiff'LE software, Interactive now offers the complete ffifle line. I guess Eill Fogers finally SGL the light....

see ra at the meetings

Dewarne Van Hoozer

Dieter Muller, of Duncan Micro, 1015 Hickory Avenue, Duncan, Oklahoma 73533, is the author of this program, an earlier version of which is on HAAUG Software Library volume \#35. The video display from this Binary Programmer is the closest thing to a front panel entry the Apple user is likely to see! Entering I's and \emptyset 's at the machine level is intimacy plus with one's computer, but leaves no question of the value of an assembler, or a high-level interpreter such as BASIC. Try it. You'll learn in a new way both the simplicity and the sophistication of a microprocessor.

BINARY PROGRAMMER DOCUMENTATION YERSION 2. 1

THE BINARY PROGRAMMER U2. 1 HAS 16 COMMANDS AND A COMPLETE EINARY ADDRESS AND DATA EUS.

THE COMMRNDS ARE:
(ESC) - THIS KEY WILL DO A CALL TO THE ADORESS SPELIFIED ON THE ADDRESS EUS.
(BKSP) - NILL CLEAR THE RDDRESS BUS.
(COPY OR CTRL-U. - MILL CLEAR THE DATA EUS.
(RETURN) - DECREMENTS THE ADDRESS BUS B'r' ONE.
(0) - INCREMENTS THE HDDRESS EUS B'Y ONE.
(P) - ACTIVATES OR DE-ACTIVATES THE WRITE PROTECT FERTURE. TO DE-ACTIVATE YOU MUST KNON THE LOCK WOKD.
(9) - aCTIVATES THE ADDRESS mODE (NEEDED bECAUSE THE SHME KEY'S ARE LISED FOR DATA AND aDDRESS ENTRY.)
(0) - SAME AS (9). ENCEPT ACTIUATES DATA MODE.

COMATANDS (8) RND (9) ARE MUTUALLY' ENCLLISIGE. ONE DEACTI\{'AT THE OTHER.
(:) - WRITES WHAT IS IN DATA BUS TO ADDRESS ON ADDRESS EUS.
$(-)$ - READS DATA FROM ADDRESS ON ADDRESS BUS RND DISPLFIYS
EELOIN DATA EUS.
THE ENTE'Y KEY'S ARE:
(1-8) DHTA BUS AND FIRST 3 BITS OF ADORESS BUS. THEY FIRE READ IN KEYBOARD AS ON SCREEN. (1 IS FIRST EIT. 2 IS SECOND ETC.)
(Q, W, E. R, T, Y', U, I)-SECOND B EITS OF ADDRESS. READ LIKE FIRST \&
(THESE ARE ACTIUE IN RDDRESS MODE.)
notes
THE REACTION TIME ON THIS FROGRAM IS RATHER LOW. YOU MUST BE CAREFIL AND MAKE SURE IT READS YOUR KEYSTROKES. WHEN YOU RUIN THE FROGRAM IT WILL COME LIF WITH WRITE FROTECT ON. THE CLEAR ADDRESS AND DATA BUS COMMANDS DE-ACTIVATE BOTH AD MODE AND DATA MODE. WHILE IT IS FOSSIELE TO HAYE BOTH MODES DE-ACTIVATED, IT IS NOT POSSIBLE TO DE-ACTIVATE WRITING EXCEFT WITH THE WRITE FROTECT SWITCH. THE KEASON THIS FUNCTIO IS INCLUDED IS TO PROTECT ANY ACCIDENTAL PROGRAM CHANGING. THE LONGEST IT WILL TAKE TO RESPOND IS ABOUT 5 SECONDS. THE REASON I5. IT HAS A TABLE TO LOOK THROUGH. THE APPROPRIAT SUBROUTINE CALL CWHICH INCLUDES A WHILE FOR GNY BINARY TO DECIMAL. DECIMAL TO BINARY CONUERSION, A RATHER SLOW PROCESS. AND THEN REPRINTING ALL BUT THE DATA READ LINE OF DISFLAY' ©IN OTHER WORDS IT REPRINTS RLL EAPTIONS AND DATA EXICEPT FOR DATA READ.)

```
1ST REM
ONARY- PROGRAMMER (V 2.1)
```

```
    DIM B(26);ADDRESS(16),DTA(8),ACT(8)
```

 DIM B(26);ADDRESS(16),DTA(8),ACT(8)
 TOR A = 1 TO 8:B(A) = 0:ADINESS (A) = 0:MITA(A) = 0: #EXT A
 TOR A = 1 TO 8:B(A) = 0:ADINESS (A) = 0:MITA(A) = 0: #EXT A
 FOR A = 9 T0 16:ADDRESS(A) = 0:B(A) = 0: NEXT A
 FOR A = 9 T0 16:ADDRESS(A) = 0:B(A) = 0: NEXT A
 占OR A = 17 T0 26:B(A) = 0: NEXT A
 占OR A = 17 T0 26:B(A) = 0: NEXT A
 REM KEYS AND FUNCTIONS:
 REM KEYS AND FUNCTIONS:
 -REM
 -REM
 REK 1-8,Q-I IATA KEYS
 REK 1-8,Q-I IATA KEYS
 'REM 9 ADDRESS SET
 'REM 9 ADDRESS SET
 REM 0 SET UP IIATA
 REM 0 SET UP IIATA
 REN : URITE DATA
 REN : URITE DATA
 REK - PRINT BYTE VALUE
 REK - PRINT BYTE VALUE
 REK P URITE PROTECT
 REK P URITE PROTECT
 130 REH ---------------------------------
130 REH ---------------------------------
140 KD = - 16384:KBDS = - 16368: REM KEYEDARII POINTERS
140 KD = - 16384:KBDS = - 16368: REM KEYEDARII POINTERS
150 B(1) = ASC ("1"):B(2)=ASC("2"):B(3)= ASC ("3"):B(4)=ASC("4"):B(5)= ASC ("5"):B(6)= ASC ("6"):B(7)=ASC(
150 B(1) = ASC ("1"):B(2)=ASC("2"):B(3)= ASC ("3"):B(4)=ASC("4"):B(5)= ASC ("5"):B(6)= ASC ("6"):B(7)=ASC(
"7"):B(8) = ASC ("8")
"7"):B(8) = ASC ("8")
160 B(9) = ASC ("Q"):B(10)= ASC ("W"):B(11) = ASC ("E"):B(12)= ASC ("R"):B(13)= ASC ("T"):B(14)= ASC("Y"):B(15)=
160 B(9) = ASC ("Q"):B(10)= ASC ("W"):B(11) = ASC ("E"):B(12)= ASC ("R"):B(13)= ASC ("T"):B(14)= ASC("Y"):B(15)=
ASC ("U"):B(16) = ASC ("I")
ASC ("U"):B(16) = ASC ("I")
170 B(17) = ASC ("q"):B(18)= ASC ("0"):B(19)= ASC (":"):B(20) = ASC ("-"):B(21)= ASC ("P")

```
170 B(17) = ASC ("q"):B(18)= ASC ("0"):B(19)= ASC (":"):B(20) = ASC ("-"):B(21)= ASC ("P")
```



```
190 REM SET VALUES TO BE READ
```

190 REM SET VALUES TO BE READ
200 CLR = - 936:INU = - 384:NRL = - 380: REM FOINTERS TO UTILITIES
200 CLR = - 936:INU = - 384:NRL = - 380: REM FOINTERS TO UTILITIES
210 ADD = 1:URITE = 0:PROTECT = 1: REN POINTERSFOR FUNCTION
210 ADD = 1:URITE = 0:PROTECT = 1: REN POINTERSFOR FUNCTION
220 CALL CLR: CALL NRL
220 CALL CLR: CALL NRL
230 UTAB 10: HTAB 18: PRINT "ADDRESS"
230 UTAB 10: HTAB 18: PRINT "ADDRESS"
240 UTAB 13: HTAB 19: PRINT "IIATA"
240 UTAB 13: HTAB 19: PRINT "IIATA"
250 UTAB 2: HTAB 7: PRINT "ADILRESS";: HTAB 18: PRINT "IATA";: HTAB 28: PRINT "URITE": HTAB 7: PRINT "MODIFY";: HTAB 17: PRINT
250 UTAB 2: HTAB 7: PRINT "ADILRESS";: HTAB 18: PRINT "IATA";: HTAB 28: PRINT "URITE": HTAB 7: PRINT "MODIFY";: HTAB 17: PRINT
"MOBIFY";: HTAB 27: PRINT "PROTECT"
"MOBIFY";: HTAB 27: PRINT "PROTECT"
UTAB 16: HTAB 16: PRINT "DATA READ"
UTAB 16: HTAB 16: PRINT "DATA READ"
VTAB }
VTAB }
FOR A = 1 TO 16
FOR A = 1 TO 16
HTAB 4 + A * 2: PRINT ADDRESS(A);
HTAB 4 + A * 2: PRINT ADDRESS(A);
NEXT A
NEXT A
vTAB 12
vTAB 12
FOR A = 1 TO 8
FOR A = 1 TO 8
HTAB 12 + A * 2: PRINT ITA(A);
HTAB 12 + A * 2: PRINT ITA(A);
HEXT A
HEXT A
CALL NRL
CALL NRL
vTAB 1
vTAB 1
HTAB }1
HTAB }1
PRINT ADD;: HTAB 20: PRINT URITE;: HTAB 30: PRINT PROTECT
PRINT ADD;: HTAB 20: PRINT URITE;: HTAB 30: PRINT PROTECT
VTAB 10 + (2 * URITE)
VTAB 10 + (2 * URITE)
X = PEEK (KD): IF X < 128 THEN 400
X = PEEK (KD): IF X < 128 THEN 400
X=X-128
X=X-128
POKE KBDS,O
POKE KBDS,O
FOR A = 1.TO 26
FOR A = 1.TO 26
IF X = B(A) THEN 460
IF X = B(A) THEN 460
NEXT A

```
    NEXT A
```

```
450 60T0 400
60 IF A > 16 THEH 550
400 IF ADD THEN 500
480 IF URITE THEN 520
490 60T0 400
500 ADDRESS(A) = NOT ADDRESS(A)
G0TO 230
520 IF A > 8 THEN 230
530 DTA(A) = NOT DTA(A)
540 G0T0 230
550 IF A = 17 THEN ALII = NOT ADID
560 IF A = 17 AND WRITE THEN WRITE = MOT WRITE: GOTO 230
570 IF A = 18 THEN WRITE = NOT WRITE
500 IF A = 18 AND ADD THEN AIDD = MOT AIID: GOTO 230
590 IF A = 21 THEN 1160
600 IF A = }19\mathrm{ THEN }66
610 IF A = 20 THEN 900
620 IF A = 22 THEN 1180
630 IF A = 23 THEN 1250
640 IF A = 24 THEN 1330
6 4 3 ~ I F ~ A ~ = ~ 2 5 ~ T H E N ~ 5 0 0 0 ~
6 4 5 ~ I F ~ A ~ = ~ 2 6 ~ T H E N ~ 5 0 5 0 ~
650 GOTO 230
660 IF PROTECT THEM 1140
6 7 0 ~ R E M
6 8 0 ~ O F F S E T ~ = ~ 1 6 ~
690 NUK = O:ML = 0
700 FOR A = 1 T0 16
710 OFFSET = OFFSET - 1
720 NUH = NUH + ADJRESS (A) : (2 * DFFSET)
730 NEXT A
70 OFFSET = 7
760 FOR A = 1 TO 8
70 UL = VL + (DTA(A) * (2 * OFFSET))
780 OFFSET = OFFSET - 1
70 NEXT A
800 REN
820 FOR W = 1 TO 300: NEXT W
83O POKE NUH,VL
833 PRINT "DATA URITTEN"
835 FOR U = 1 TO 500: NEXT W
840 GOTO 220
850 UTAB 23: PRINT "PROPOSED ADDRESS IS WRITE PROTECTED"
860 FOR A = 1 TO 16:ADDRESS(A) = 0: NEXT A
870 PROTECT = 1
880 FOR W = 1 TO 300: NEXT W
890 GOTO 220
900 GOSUB 980
910 UTAB 15: CALL NRL
920. FOR A = 1 TO 8
930 MTAB 12 + A:k 2: PRINT ACT(A);
```

940 NEXT A
950 GOTO 230
960 CALL NRL
970 END 1400 -CALL NUK
980 OFFSET $=16$
990 NUK $=0: \mathrm{VL}=0$
1000 FOR A $=1$ TO 16
1410 PRINT "END OF SUBROUTINE"
1420 FOR $W=1$ TO 1000: NEXT W
1010 OFFSET $=$ DFFSET -1
1430 GOTO 220
1020 NUM $=$ NUM $+\operatorname{ALIDRESS}(A) *(2 *$ OFFSET)
5000 FOR A $=1$ TO 16:AIDDRESS(A) $=0:$ NEXT A

1030 NEXT A
5010 ADD $=0:$ URITE $=0$
10502 = PEEK (NUM)
1060 OFFSET $=7$
1070 FOR $A=1$ TO 8
$1080 \operatorname{ACT}(A)=\operatorname{INT}((Z /(2 *$ OFFSET $)))=1$
1090 IF ACT(A) THEN Z = Z - 2*OFFSET
1110 OFFSET = OFFSET - 1
1120 NEXT A
1130 RETURN
1140 VTAB 23: FRINT "WRITE PROTECT ON"
1150 FOR $W=1$ TO 300: NEXT W: GOTO 220
1160 Z $\$$ = "UNLOCK": IF NOT PROTECT THEN 1167
1161 VTAB 23: PRINT "CODE?":

1165 NEXT
1167 PROTECT = NOT PROTECT
1170 GOTO 220
1180 IF NOT ADD THEN 230
1185 FOR A $=16$ TO 1 STEP -1
1190 IF ADDRESS(A) $=0$ THE: 1215
1200 NEXT A
1210 FOR A $=1$ TO 16:ABDRESS $(A)=0:$ NEXT A: GOTO 1240
1215 IF $A=16$ THEN 1230
1220 FOR B $=A+1$ TO 16:ADIORESS $(B)=0:$ NEXT B
$1230 \operatorname{ADDRESS}(A)=1$
5020 GOTO 220
5050 FOR $A=1$ TO 8:ITTA $A)=0:$ NEXT A
5060 AIID $=0: W R I T E=0$
5070 G0TO 220

1240 GOTO 230
1250 IF NOT ADD THEN 230
1255 FOR $A=16$ TO 1 STEP - 1
$1260 \operatorname{IF} \operatorname{ADDRESS}(\mathrm{~A})=1$ THEN 1290
1270 NEXT A
1280 FOR A $=1$ TO 16:AMDRESS $(A)=1:$ NEXT A: GOTO 1320
1290 IF $A>16$ THEN $A=16$
1295 IF $A=16$ THEN 1310
1300 FOR $B=A+1$ T0 16:ALIDRESS(B) $=1:$ NEXT B
$1310 \operatorname{ADDRESS}(A)=0$
1320 GOTO 230
1330 OFFSET $=16$
1340 NUM $=0:$ VL $=0$
1350 FOR A $=1$ TO 16
1360 OFFSET $=$ OFFSET -1
1370 NUM $=$ NUM $+\operatorname{ADDRESS}(A) *(2 *$ DFFSET $)$
178N NEYT \triangle

APPLE BARREL, like HAAUG itself, is a user-oriented medium. Neither one is the creation of someone else for the benefit of the user. Each exists as a creation of users, by users, for users. The articles and programs you enjoy here are the output of other Apple hobbiests like yourself, who have worked to wrest into a communicable form something they have conceived, nurtured and given birth to. It has been observed that the ability to communicate one's idea to others is a test of one's comprehension of his or her own idea. Apple Barrel, then, is a proving ground for your growing mastery of BASIC and 6502 assembly languages, and is a worthy forum wherein to demonstrate your skills at self-understanding and communication in areas related to you and your Apple.

There are several points to consider in writing either an article or program for publication here.

1. ASSUME that your reader, although somewhat knowledgeable about the Apple, understands only some fundamentals, but wants to learn more. Your job, then, is to teach.
2. KEEP IN MIND the faithful guidelines of WHO, WHAT, WHERE, WHEN, WHY and HOW. Take time to explain. If it is a program you are sharing, tell what it does, where it loads, when it is useful, why you wrote it, and then go on to discuss some of how it works.
3. ILLUSTRATE, simply and concretely, the things you are writing about. If printing all or part of a program run will get your point across better, submit it. You can figure your readers will retain only a little of what you tell them, but will hang on to a good bit of what you can show them. Ideally, your reader should be able to try out your item on an Apple (if it is a program you have written), and you will thereby assure the greatest possible learning and retention.

YOU DON'T HAVE TO HAVE IT ALL TOGETHER yourself to write for APPLE BARREL. Each of us is at a unique and different stage of computer mastery. If you really have no idea what the sub-routine at $\$ 9 E 7 E$ does, don't worry about it. Somebody else in the club DOES know, or can figure it out. Your questions are as valuable as your answers.

Typed copy is fine for submission to Apple Barrel, but there are other options as well. The editor can accept materials done on the more popular text-editors, such as "Dr. Memory," "ApplePIE," "APPLEcations Unlimited Text

Editor," or even the "Appen 1." Submit disk (or tape, in the case of Appen 1) and a blank will be returned to you. Please try to catch your errors, both syntactic and typographical, prior to submission. Your editor is a one-finger typist (different from a one-fingered typist) and cannot retype messy manuscripts. If you have or have access to a printer, run things through on your own and send in an original printout. Dot matrix copies reasonably well, but letter-quality Selectric is crispest of all.

If one of the club officers asks you to work up an article, take it seriously. You have been asked because we are aware that you are doing something interesting, and the rest of us would like to learn from you. What do you say?

Submit manuscripts to:
Ed Seeger, Editor The Apple Barrel 4331 Nenana Drive Houston, Texas 77035
(713) 723-6919

APPLE BARREL is printed solely through club dues and special donations. HAAUG thanks Rudge Allen for making available the resources of his office for duplicating the last issue of the newsletter. An occasional donation such as that will help insure issues of the size and content we think members want, while keeping within our financial limits. Do any other HAAUG's have access to high-speed, two-sided copy equipment? Please let Ed Seeger know if you are able to donate printing.

ALLEN，E．RULGE：． $713-62-3979: 21$
ATKINSON，E．NEELY．．．713－529－4165 ：105
BADLEY，JACK：．713－497－8599：94
BANKS JR：GUILBERT ：．． $415-325-9784$ ：46
BAFEEF，BRUCE $H_{2} \ldots 713-469-5808: 30$ BASTON，BEN F．：． $713-667-6227: 76$

BECK，TOM R．$=.713-376-7926: 22$
BELANGEF，FRANK R．．．．713－782－4695 ：39
BELLOWS，FRANK．．．．713－622－2089 ：88
BLACK，［IAVID．．．719－795－4190 ：97
BLAHA，GLEN．．．：3
BLOXSOM，JOSEFH T．．．．713－781－3669：54
BLUEFARE，FICHARD $A_{1}: .713-777-6499: 40$
EOULINE，GEORGE II．．．：：24
GREAUX IRe $_{\text {，}}$ WALTER J．．．．$: 10$
ERISEIN，JOHN．，．713－972－1218 ：44
CASTROW，IR，FRED F．．．713－774－7433：59
CHAFMAN，LIOUG．，．713－977－0909 ：49
COATES，STEPHEN W．：．．713－522－0660 ：96
COHEN，ROY：．．713－780－8：477：60
COLLINS，ROBERT V．．．．713－495－3777 ：18
CONNER；STEVE：． $713-777-8912$ ：98
CORNELSEN，W．HOWARM．． $713-789-6282$ ：104
CORNWELL：DENNIS A．．．．713－774－0671 ：43
COULTER，MICHAEL Daan $713-383-27 E 6: 107$
［AVIDGON，FOBERT．．．713－771－4980 ：13
DENKEEF，CHARLES R．．．．713－723－5141 ：86
IICKEON，DR．JEFFiY．．． $713-461-8027$ ： 64
IILLENBURG，RONALD K．．．．713－665－3324 ：32
IIINL：ANSON，ROEERT M．．．．：S8
ESSIG，FAY C』．．．713－497－7165 ：93
EUBANK，F．W．．．．： 2
FAY，［0110．．．713－667－3093 ：74
FELLLIIN，JEANNE』ロ．713－356－2047 ：69
FRACHTMAN，MICHAEL E．．．．713－723－2360 ：72
FUKUYA，LESLIE：．．713－988－05E6 ：41
GESEL，SANDRA L．．．．713－981－1632 ：73
GILERETH，LEE E．．．．713－342－2685 ：100
GUILAK，FARZIN．：713－932－1014 ：78
HAAR，E［WWARD．： $713-781-9564$ ：77
HAMILTDN，FREDERICK．． $713-785-9540: 50$
HANEEL，NIMYLE．． $713-665-3910: 106$
HENDERSON，M．C．．．．713－643－2064 ：52
HENDRIX，FEX E．』．．713－498－7413：92
HOLLEY ．IR．，DON W．．．．713－644－0544：35
HIJRII，LIAVIDI．．．713－499－27E7 ：58
IAIIBERT，F．L．．．．： 33
．IOHNSON，JEFF．．．713－988－0787 ：79
．IOHNSON，JOLLY N．．．．713－467－5937 ：19
IOHNSTON，MIKE ．．．：31
KELLER，ROBERT M．．．．：91
KESLENSKY，JERRY F．．．．．718－666－1964 ：84
KOPIWODA，ALEX：．71：3－526－8041 ：63
LELEF，WILLIA 1 ．． $713-668-6232: 29$
LIFEON，NEIL：．：：67
LOONIS，KEN．．．：：11
LIUNG，JOHN D．．．．713－621－3577 ：103
LYTLE，THOMAS．．．713－668－6940：6
MARCHAND，DAVID．．．713－497－7366 ：56
MARTIN，MARSHALL D．．．： 26
MC GFF，．IAMFS F．．．．713－66．3－6306 ： 45

MC：KINNEY，Mu L．．．．71．3－494－7970 ： 36 MELTON，LEWIS．：．713－493－1757 ：102 MEYERS，CHRIS E．a． $713-668-3949: 101$ MILLER，CARL．．．713－661－1243：70 MOTT，EHAFMAN ．．．： 37
MUNSEY，JR：MAX：：： 5
NOVAK，IAVID F．．．．．713－497－3291 ： 16
ODOM，JAMES．． $713-426-3970: 51$
PALMER，IONALII $H_{0} . ., 713-783-6556: 75$
PALMOUIST，E．F．．．．713－688－2105 ：80
PARFIMOWICZ，DANIEL J．．．：：12
PEACOCK，TOM L．．．．713－960－8786 ：25
PERKINS，FON．． $713-342-5247$ ： 81
PERRY JR．，WILLIAM L：．．．713－723－1520 ： 6
PETERSON，ROBERT K．．．．713－666－76．44 ：95
PEYTON，JAMES L．．．．713－489－8767 ：14
FHAYER，JOSEFH C．：．．713－558－1444 ：47
PORTER，FLOYD R．． $405-536-0986: 71$
RAIIN，LAYTON．．．：17
ROSEN，SUSAN D．．．：713－771－1614 ： 62
ROSS，FREDERIOK．： $713-249-3421$ ：55
ROSSEY，TRENT C．』． $713-933-6218: 89$
SANLFIELII，ROBERT E．：．： 85
SEEGER，ELWARD B．．．．713－723－6919 ：29
SHIURR，LARFY，．715－776－2658 ：57
SIMONI，RICHARD T．：．＂： 15
SMITH，ROBERT D．．．．：：9
SOUTHERLAND，JOSEPH P．．．．：23
STERRY，EHRIS W．．．．： 3
STOUT，ROBERT B．．．．：27
TURNER，JACK E．．．．713－393－1885 ： 4
TURFEN，TRAVIS．．．713－476－0640：63
VAN HDOZER，IEWAYNE：．．713－682－2126：7
VAN DVEREN，PETER．：： 1
VAN WART，CHARLES A．．．．： 34
VANLIVER，LARRY：：：90
VELA，MARY LOU．．．713－782－1594 ：82
WALKER，IICK ．．．713－840－0572 ：48
WALLS， B_{A} EOOFER．． $713-933-5813: 99$
WARREN，DAVE．．．713－373－0186：20
WEINETOCK，MICHAEL I．．．．： 65
WIBKER，WILLIAM A．．．713－481－4815 ：61
WIEDEMER，IIOHN T．．．．713－497－4855 ：83
WINTER，KEVIN MARK．．．713－333－3289 ：42
WOLFE，CHAFLES B．．．．713－781－6565：53

If your telephowe number is in correct or

 missing，tell richard so that he can make the Changes．How large is the Houston Area Apple Users Group？ 107 and grow－ ing．Dues are \＄12／year．Richard Bluefarb is Treasurer．New members are welcome．Feel free to attend a club meeting，or several，and set to know us．Meeting schedule is printed elsewhere in this issue of Apple Barrel．

The interest inventory will be printed neat month．

In the last installment of this highly informative series, rou were given the 'truth' concerning data base srstems. Y'ou were told that a data base is just a great bis heap of different kinds of data and that a Data Ease Management Erstem was a prosram or set of programs which allow access to the data heap. The intent of this installment of "DATF EffIE' is to introduce several concepts in data structures.

When we talk about 'data structures' we really mean two things. First we're talkins about the phrsical storase of the data and secondlr we're talking about the wars in which the data can be accessed. Some data structures I plan on discussing include lists, decks, and queues. Next month we will cover the more advanced data structures involving trees. We will also finally get into the actual internals of DEME.

To begin our discussion about data structures let's first define the pointer. The pointer is not an index finser but rather an index which points to a data location. To make things easier consider the following program sesment

```
19 MF% =5
20 DIN MODE(MFX')
SCHEFO=0:TFIL =0
```

The variables HEFD and TFIL are pointers (indexes) which are used to indicate the besinning and the ending of the arrar MCODE. MFM just sets the maximum number of entries in the array NCIDE. Since MFX is set to 5 in statement \#1区i the arrar will only contain 5 entries. (FH HF!!! rou think the Mad Eomber makes a mistake, no? I know that fF'FLE allows the use of zeroth entrr in an array. For mir purposes this entry does not exist! fut that in your pipe and smoke it!!

Er defination when HEFD is zero then the arrar is said to be emptr. When a pointer is zero it is pointing to nothing.

The list data structure is one of the most commonlr used methods of accessing arrars. I will use the list structure to introduce the language notation used in discussing data structures.

In anr sturcture the primarr concern is to get from the current entry to the next one or to the previous entrr without exceeding the bounds of the list as definded br the HEFD and the TFIL. If IN\% were a pointer to the current entrr in the arrar MCDE then INXi+1 would point to the next entrr and INXi-1 would point to the previous entry. When either INX:-1 is less than HEFD or INXi+1 is greater than TAIL then the bounds of the list have been exceeded.

The simple list has two implied pointers. Dependins on your point of view of the list these two pointers are called (UF, DCIWN) or (LEFT, FIGHT) or〔FOFWFRD, EACKMFFID. Let's view NaDE as a vertical list structure with the head at the top and the tail at the bottom. If INX, points to the current entry then JolWN points to the next entry toward the tail. UF would then point to the next entry toward the head. (ie. UF $=I N X_{i}-1$ and DCWN $=I N X_{i}+1$) Fecall that in order to access the value of an arrar entry rou code somethins like. . YFLUE=NGDE(INX). The value of the next entry would be. VFLUE=MCIDE (DCIWN). The value of the frevious entrr would be. . Y'FLUE=NGDE (UF').

Gne war of viewins data structures is grafhically. The diagram of the simple list structure is...

The values of HEFD and TAIL directly index the list. The lines between the boxes represent implied links which connect each entry with the next entry. The between node links are implied because we know that in order to so down from the current entry you add one. To go up you subtract one. The numbers inside the squares are the values of the arrar at that node.

Notice that if rou started at HEFD and printed everr node through TFIL you would get the contents of the array in ascending sequence. Suppose rou had the following list....

There is no way to print the contents in ascending order. What is needed is a redesign of the links between each node. Eir making the UF', DCOWN links explicit we can provide a path by which the contents of the array can be accessed in order. This is called the doublly linked list structure. The prosram on the next page uses this structure to keep track of the ' N ' largest numbers in an input stream.

Notice that the down pointer of the tail is zero and the up pointer of the head is also zero. f zero pointer means there is no where to go.

If the up pointer of the head pointed to the tail and the down pointer of the tail pointed to the head then we would have a circle. This circular data structure is called a queue.
f deck data structure is sometimes called a stack. For you people who do assembly lansuase prosramming you should know all there is to know about stacks. f deck data structure is a LIFG (Last In First Clut) list. To visualize a deck think of the discard pile in a card game. You can only retrieve the last card which was put onto the pile. Fffter the top of the discard pile is 'poped' (ie. taken off the pile) then the next card becomes available.

That's too much for this month. Next month br popular reauest I mar tell rou how to tell the trees from the forest (if I can find mir war out that is).

JLIST


```
3ege I=H
S210 IF I = G THEN RETURN
3220 REM
3c\pi0 REM
3240 IF X(I) ( X(N) THEN 05406
3250 IF X(D(I)) > X(N) THEN 3406
32E6D(N) = O(I)
3276U(D(I)) = N
seg
3296U(N)=I
SEan RETURN
3460 I = D(I)
3416 GaTa S216
4E40 REM
4G116 REM
4020 REM
5066 PRINT
5016 FRINNT
5GEG FRINT "WGULD YOU LIKE TO SEE THE DFTF IN FSCENOING OR DESCENDING GRDER (FIOD)?
5016 INFUT F%
5E146 IF F$ = "F" THEN GOTO TEGG
6040I I = H
6010 FFRINT X:(I)
6E20 I = D(I)
6EO IF I = O THEN 8GGE
6040 GOTG 6a10
7ater I = T
7010 FFINT XXI)
7020 I = U(I)
70SG IF I = G THEN 80G@
7040 GOTG 7010
8&& END
(this pgm is avnilable from the HaAug software Librany. Ed)
JREM H- POINTER TO HEFD
JREM T- POINTER TO TFIL
IREM F- FOINTER TO NEXT FREE NODE
JREN E- END OF DATA INDIC:ATOR
JREN N- FOINTER TO NEN NODE
JREM U(I)- UP FOINTER FOR NODE(I)
JREM D(I)- DOWN FOINTER FOR NODE(I)
JREM X- THE GRRFY WHERE THE LIST IS STORED
JREN M- MFXIMUN SIZE OF GREAY X
JKUN
INSERTION SGRT EXAMPLE
ENTER THE NUMEER GF ITEMS TO KEEF TRAC:K OF
%
ENTER THE UNIQUE END OF DATF NUMEER:
?-1
?5 ?-1
?
?RE ENTER:
?7
?5
?8
?0
9
?9
```


(713) 723-6919

Postmasters:
Form 3579 requested

FFANK BELLOWE 3405 MEADOWLAKE LN. HOUSTON, TEX. 77027

